Dynamic Obstacle Avoidance with Simultaneous Translational and Rotational Motion Control for Autonomous Mobile Robot

  • Masaki Takahashi
  • Takafumi Suzuki
  • Tetsuya Matsumura
  • Ayanori Yorozu
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 174)

Abstract

This paper presents a real-time collision avoidance method with simultaneous control of both translational and rotational motion with consideration of a robot width for an autonomous omni-directional mobile robot. In the method, to take into consideration the robot’s size, a wide robot is regarded as a capsule-shaped case not a circle. With the proposed method, the wide robot can decide the direction of translational motion to avoid obstacles safely. In addition, the robot can decide the direction of the rotational motion in real time according to the situation to perform smooth motion. As an example of design method of the proposed method, novel control method based on the fuzzy potential method is proposed. To verify its effectiveness, several experiments using a real robot are carried out.

Keywords

Service Robot Obstacle Avoidance Omni-directional Platform Fuzzy Potential Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Du, Z., Qu, D., Yu, F., Xu, D.: A Hybrid Approach for Mobile Robot Path Planning in Dynamic Environments. In: Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 1058–1063 (2007)Google Scholar
  2. 2.
    Khatib, O.: Real-time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. of Robotics Research 5(1), 90–98 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Koren, Y., Borenstein, J.: Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1398–1404 (1991)Google Scholar
  4. 4.
    Borenstein, J., Koren, Y.: Real-Time Obstacle Avoidance for Fast Mobile Robots. IEEE Trans. on Systems, Man and Cybernetics 19(5), 1179–1187 (1989)CrossRefGoogle Scholar
  5. 5.
    Borenstein, J., Koren, Y.: The Vector Field Histogram Fast Obstacle Avoidance for Mobile Robots. IEEE Trans. on Robotics and Automation 7(3), 278–288 (1991)CrossRefGoogle Scholar
  6. 6.
    Lumelsky, V.J., Cheung, E.: Real Time Obstacle Collistion Avoidance in Teleoperated Whole Sensitive Robot Arm Manipulators. IEEE Trans. Systems, Man and Cybernetics 23(1), 194–203 (1993)CrossRefGoogle Scholar
  7. 7.
    Borenstein, J., Koren, Y.: The Vector Field Histogram Fast Obstacle Avoidance for Mobile Robots. IEEE Trans. on Robotics and Automation 7(3), 278–288 (1991)CrossRefGoogle Scholar
  8. 8.
    Dieter, F., Wolfram, B., Sebastian, T.: The Dynamic Window Approach to Collision Avoidance. IEEE Robotics and Automation 4(1), 1–23 (1997)Google Scholar
  9. 9.
    Kavraki, L.: Computation of Configuration Space Obstacles Using the Fast Fourier Transform. IEEE Trans. on Robotics and Automation 11(3), 408–413 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, Y., Chirikjian, G.S.: A New Potential Field Method for Robot Path Planning. In: Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, pp. 977–982 (2000)Google Scholar
  11. 11.
    Takahashi, M., Suzuki, T., Matsumura, T., Yorozu, A.: Obstacle Avoidance with Simultaneous Translational and Rotational Motion Control for Autonomous Mobile Robot. In: Proc. of the 8th Int. Conf. on Informatics in Control, Automation and Robotics (2011)Google Scholar
  12. 12.
    Ambrose, R.O., Savely, R.T., Goza, S.M., Strawser, P., Diftler, M.A., Spain, I., Radford, N.: Mobile manipulation using NASA’s robonaut. In: Proc. IEEE ICRA, pp. 2104–2109 (2004)Google Scholar
  13. 13.
    Takahashi, M., Suzuki, T.: Multi Scale Moving Control Method for Autonomous Omni-directional Mobile Robot. In: Proc. of the 6th Int. Conf. on Informatics in Control, Automation and Robotics (2009)Google Scholar
  14. 14.
    Tsuzaki, R., Yoshida, K.: Motion Control Based on Fuzzy Potential Method for Autonomous Mobile Robot with Omnidirectional Vision. Journal of the Robotics Society of Japan 21(6), 656–662 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Masaki Takahashi
    • 1
  • Takafumi Suzuki
    • 1
  • Tetsuya Matsumura
    • 1
  • Ayanori Yorozu
    • 1
  1. 1.Dept. of System Design EngineeringKeio UniversityYokohamaJapan

Personalised recommendations