AutomationML as a Shared Model for Offline- and Realtime-Simulation of Production Plants and for Anomaly Detection

  • Olaf Graeser
  • Barath Kumar
  • Oliver Niggemann
  • Natalia Moriz
  • Alexander Maier
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 174)

Abstract

The growing complexity of production plants leads to a growing complexity of the corresponding automation systems. Two significant challenges have to be faced: (i) the control devices have to be tested before they are used in the plant. (ii) The diagnosis functions within the automation systems become more and more difficult to implement; this entails the risk of undetected errors. Both challenges may be solved using a joint system model of the plant and the automation system: (i) Offline simulations and HIL tests use such models as an environment model and (ii) diagnosis functions use such models to define the normal system behaviour. Modular models like this can be represented with AutomationML. Additionally, testing and diagnosis require the simulation of these models. Therefore, a corresponding simulation system for AutomationML models is presented here. A prototypical tool chain and a model factory (MF) are used to show results for this approach.

Keywords

Automation Technology Modelling Simulation HIL Test Functional Mock-up Unit AutomationML 

References

  1. 1.
    Brecher, C., Fedrowitz, C., Herfs, W., Kahmen, A., Lohse, W., Rathjen, O., Vitr, M.: Durchgängiges Production Engineering – Potenziale der digitalen Fabrik. In: Brecher, C., Schmitt, F.K.R., Schuh, G. (eds.) Wettbewerbsfaktor Produktionstechnik: Aachener Perspektiven, Aachen, AWK (2008)Google Scholar
  2. 2.
    Kühn, W.: Digital factory: simulation enhancing the product and production engineering process. In: WSC 2006: Proceedings of the 38th Conference on Winter Simulation, Winter Simulation Conference, pp. 1899–1906 (2006)Google Scholar
  3. 3.
    Gall, H.: Functional safety IEC 61508 / IEC 61511 the impact to certification and the user. In: AICCSA 2008: Proceedings of the 2008 IEEE/ACS International Conference on Computer Systems and Applications, pp. 1027–1031. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  4. 4.
    Steiner, P., Schmidt, F.: Anforderungen und Architektur zukünftiger Karosserieelektroniksysteme. VDI Berichte Nr. 1789 (2003)Google Scholar
  5. 5.
    Szulman, P., Assmann, D., Doerr, J., Eisenbarth, M., Hefke, M., Soto, M., Trifu, A.: Using ontology-based reference models in digital production engineering integration. In: Proceedings of the 16th IFAC WORLD CONGRESS, Prague (2005)Google Scholar
  6. 6.
    Stein, S., Kühne, S., Drawehn, J., Feja, S., Rotzoll, W.: Evaluation of OrViA Framework for Model-Driven SOA Implementations: An Industrial Case Study. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 310–325. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Strasser, T., Sunder, C., Valentini, A.: Model-driven embedded systems design environment for the industrial automation sector. In: Proceedings of the 6th IEEE International Conference on Industrial Informatics, Daejeon, South Korea (2008)Google Scholar
  8. 8.
    Niggemann, O., Stroop, J.: Models for model’s sake: why explicit system models are also an end to themselves. In: ICSE 2008: Proceedings of the 30th International Conference on Software Engineering, pp. 561–570. ACM, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Niggemann, O., Otterbach, R.: Durchgehende Systemverifikation im Automotiven Entwicklungsprozess. In: Tagungsband des Dagstuhl Workshops Modellbasierte Entwicklung eingebetteter Systeme IV (MBEES), Schloss Dagstuhl, Germany (2008)Google Scholar
  10. 10.
    Streitferdt, D., Wendt, G., Nenninger, P., Nyssen, A., Lichter, H.: Model driven development challenges in the automation domain. In: 32nd Annual IEEE International Computer Software and Applications, COMPSAC 2008, pp. 1372–1375 (2008)Google Scholar
  11. 11.
    Drath, R., Weidemann, D., Lips, S., Hundt, L., Lüder, A., Schleipen, M.: Datenaustausch in der Anlagenplanung mit AutomationML. Springer (2010)Google Scholar
  12. 12.
    Modelica Association, Modelica (2011), https://www.modelica.org/
  13. 13.
    Allen, P. (ed.): The OMG’sModel Driven Architecture, volume XII of Component Development Strategies. The Monthly Newsletter from the Cutter Information Corp. on Managing and Developing Component-Based Systems (2002)Google Scholar
  14. 14.
    Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven Architecture. Addison-Wesley (2004)Google Scholar
  15. 15.
    PNO: Profinet specification iec 61158-5-10 (v2.1) (2007) Google Scholar
  16. 16.
    Graeser, O., Niggemann, O.: Planung der Übertragung von Echtzeitnachrichten in Netzwerken mit Bandbreitenreservierung am Beispiel von Profinet IRT. In: Echtzeit 2009 - Software-intensive verteilte Echtzeitsysteme GI-Fachauschuss, Boppard, Germany (2009)Google Scholar
  17. 17.
    IEC 62424: Festlegung für die Darstellung von Aufgaben der Prozessleittechnik in Fliessbildern und für den Datenaustausch zwischen EDV-Werkzeugen zur Fliessbilderstellung und CAE-Systemen (2008)Google Scholar
  18. 18.
    Khronos Group: Collada - 3d asset exchange schema (2011), http://www.khronos.org/collada/
  19. 19.
    PLCopen (2011), http://www.plcopen.org/
  20. 20.
    Modelisar project: Functional mock-up interface (2011), http://functional-mockup-interface.org/
  21. 21.
    MSDN: Visual studio visualization and modelling sdk vsvmsdk (2011), http://code.msdn.microsoft.com/
  22. 22.
    Kumar, B., Niggemann, O., Jasperneite, J.: Statistical models of network traffic. In: International Conference on Computer, Electrical and Systems Science (2010)Google Scholar
  23. 23.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Sproston, J.: Decidable model checking of probabilistic hybrid automata (2000)Google Scholar
  25. 25.
    DASSAULT SYSTEMES: Dymola (2011), http://www.dymola.com
  26. 26.
    Microsoft: Managed extensibility framework (2011), http://mef.codeplex.com/
  27. 27.
    Kumar, B., Niggemann, O., Jasperneite, J.: Test generation for hybrid, probabilistic control models. In: Entwurf komplexer Automatisierungssysteme (EKA 2010), Magdeburg, Germany (2010)Google Scholar
  28. 28.
    Supavatanakul, P., Lunze, J., Puig, V., Quevedo, J.: Diagnosis of timed automata: Theory and application to the damadics actuator benchmark problem. Control Engineering Practice 14(6), 609–619 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olaf Graeser
    • 1
  • Barath Kumar
    • 2
  • Oliver Niggemann
    • 2
  • Natalia Moriz
    • 2
  • Alexander Maier
    • 2
  1. 1.KG, Support Unit Manufacturing SolutionsPhoenix Contact GmbH & Co.BlombergGermany
  2. 2.inIT-Institut Industrial ITOstwestfalen-Lippe University of Applied SciencesLemgoGermany

Personalised recommendations