Virtual Sensors for Semiconductor Manufacturing: A Nonparametric Approach - Exploiting Information Theoretic Learning and Kernel Machines

  • Andrea Schirru
  • Simone Pampuri
  • Cristina De Luca
  • Giuseppe De Nicolao
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 174)


In this paper, a novel learning methodology is presented and discussed with reference to the application of virtual sensors in the semiconductor manufacturing environment. Density estimation techniques are used jointly with Renyi’s quadratic entropy to define a loss function for the learning problem, relying on Information Theoretic Learning concepts. Furthermore, Reproducing Kernel Hilbert Spaces (RKHS) theory is employed to handle nonlinearities and include regularization capabilities in the model. The proposed algorithm allows to estimate the structure of the predictive model, as well as the associated probabilistic uncertainty, in a nonparametric fashion. The methodology is then validated using simulation studies and process data from the semiconductor manufacturing industry. The proposed approach proves to be especially effective in strongly nongaussian environments and presents notable outlier filtering capabilities.


Semiconductors Machine learning Entropy Kernel methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman, F., Stanton, E., Bueno, R.: Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE. Ecological Economics 69(8), 1657–1665 (2010)CrossRefGoogle Scholar
  2. 2.
    Carreira-Perpiñán, M.: Mode-finding for mixtures of Gaussian distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1318–1323 (2002)CrossRefGoogle Scholar
  3. 3.
    Erdogmus, D., Principe, J.: An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems. IEEE Transactions on Signal Processing 50(7), 1780–1786 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gray, R.: Entropy and information theory. Springer (2010)Google Scholar
  5. 5.
    Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer 27(2), 83–85 (2005)CrossRefGoogle Scholar
  6. 6.
    Miller, K.: Multidimensional gaussian distributions. Wiley, New York (1964)MATHGoogle Scholar
  7. 7.
    Parzen, E.: On estimation of a probability density function and mode. The Annals of Mathematical Statistics 33(3), 1065–1076 (1962)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Popovic, D., Milosavljevic, V., Zekic, A., Macgearailt, N., Daniels, S.: Impact of low pressure plasma discharge on etch rate of SiO2 wafer. In: APS Meeting Abstracts, vol. 1, p. 8037P (2009)Google Scholar
  9. 9.
    Principe, J.: Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives. Springer (2010)Google Scholar
  10. 10.
    Principe, J., Xu, D., Zhao, Q., Fisher, J.: Learning from examples with information theoretic criteria. The Journal of VLSI Signal Processing 26(1), 61–77 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Rallo, R., Ferre-Giné, J., Arenas, A., Giralt, F.: Neural virtual sensor for the inferential prediction of product quality from process variables. Computers & Chemical Engineering 26(12), 1735–1754 (2002)CrossRefGoogle Scholar
  12. 12.
    Scholkopf, B., Smola, A.: Learning with kernels, vol. 64. Citeseer (2002)Google Scholar
  13. 13.
    Silverman, B.: Density Estimation for Statistics and Data Analysis. Number 26 in Monographs on Statistics and Applied Probability (1986)Google Scholar
  14. 14.
    Wang, P., Vachtsevanos, G.: Fault prognostics using dynamic wavelet neural networks. AI EDAM 15(04), 349–365 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Weber, A.: Virtual metrology and your technology watch list: ten things you should know about this emerging technology. Future Fab International 22, 52–54 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrea Schirru
    • 1
  • Simone Pampuri
    • 1
    • 2
  • Cristina De Luca
    • 2
  • Giuseppe De Nicolao
    • 1
  1. 1.Department of Computer Science EngineeringUniversity of PaviaPaviaItaly
  2. 2.Infineon Technologies AustriaVillachAustria

Personalised recommendations