Using Chernoff’s Bounding Method for High-Performance Structural Break Detection and Forecast Error Reduction

  • Dirk Pauli
  • Yann Lorion
  • Sebastian Feller
  • Benjamin Rupp
  • Ingo J. Timm
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 174)

Abstract

In this paper, a new method for detecting multiple structural breaks, i.e. undesired changes of signal behavior, is presented and applied to artificial and real-world data. It will be shown how Chernoff Bounds can be used for high-performance change-point detection after preprocessing arbitrary time series to binary random variables using adequate transformation routines. The algorithm is evaluated on artificial time series and compared to state of the art methods. The developed algorithm is competitive to state of the art methods in terms of classification errors but is considerably faster especially when dealing with long time series. Theoretical results on artificial data from part one of this paper are applied to real-world time series from a pharmaceutical wholesaler and show striking improvement in terms of forecast error reduction, thereby greatly improving forecast quality. In order to test the effect of structural break detection on forecast quality, state of the art forecast algorithms are applied to time series with and without previous application of structural break detection methods.

Keywords

Change-point detection Hypothesis testing Chernoff Inequality Binomial distribution Additive changes Nonadditive changes Multiple structural break detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perron, P.: Dealing with Structural Breaks. Palgrave handbook of econometrics 1, 278–352 (2006)Google Scholar
  2. 2.
    Kawahara, Y., Sugiyama, M.: Change-point Detection in Time Series Data by Direct Density-Ratio Estimation. In: Proceedings of 2009 SIAM International Conference on Data Mining (SDM 2009), pp. 389–400 (2009)Google Scholar
  3. 3.
    Markou, M., Singh, S.: Novelty Detection: a Review–Part 1: Statistical Approaches. Signal Processing 83, 2481–2497 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Guralnik, V., Srivastava, J.: Event Detection from Time Series Data. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–42. ACM (1999)Google Scholar
  5. 5.
    Ma, J., Perkins, S.: Time Series Novelty Detection Using One-class Support Vector Machines. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 1741–1745 (2003)Google Scholar
  6. 6.
    Ibaida, A., Khalil, I., Sufi, F.: Cardiac abnormalities detection from compressed ECG in wireless telemonitoring using principal components analysis (PCA). In: 2009 5th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 207–212. IEEE (2010)Google Scholar
  7. 7.
    Feller, S., Chevalier, R., Morsili, S.: Parameter Disaggregation for High Dimensional Time Series Data on the Example of a Gas Turbine. In: Proceedings of the 38th ESReDA Seminar, Pécs, H, pp. 13–26 (2010)Google Scholar
  8. 8.
    Murad, U., Pinkas, G.: Unsupervised Profiling for Identifying Superimposed Fraud. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 251–261. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Fujimaki, R., Yairi, T., Machida, K.: An Approach to Spacecraft Anomaly Detection Problem Using Kernel Feature Space. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 401–410. ACM (2005)Google Scholar
  10. 10.
    Schwabacher, M., Oza, N., Matthews, B.: Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring. In: Proceedings of the AIAA Infotech@ Aerospace Conference. American Institute for Aeronautics and Astronautics, Inc., Reston (2007)Google Scholar
  11. 11.
    Gustafsson, F.: Estimation and Change Detection of Tire-Road Friction Using the Wheel Slip. IEEE Control System Magazine 18, 42–49 (1998)CrossRefGoogle Scholar
  12. 12.
    Ide, T., Kashima, H.: Eigenspace-based Anomaly Detection in Computer Systems. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 440–449. ACM (2004)Google Scholar
  13. 13.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing Surveys (CSUR) 41, 1–58 (2009)CrossRefGoogle Scholar
  14. 14.
    Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Inc. (1993)Google Scholar
  15. 15.
    Chernoff, H.: A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum of Observations. The Annals of Mathematical Statistics 23, 493–507 (1952)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press (2007)Google Scholar
  17. 17.
    Hartigan, J., Wong, M.: Algorithm AS 136: A k-means Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics) 28, 100–108 (1979)MATHGoogle Scholar
  18. 18.
    Wadsworth, H.: Handbook of statistical methods for engineers and scientists. McGraw-Hill Professional (1997)Google Scholar
  19. 19.
    Tsay, R.: Analysis of Financial Time Series. Wiley-Interscience (2005)Google Scholar
  20. 20.
    Strang, G.: Wavelets and dilation equations: A brief introduction. Siam Review 31, 614–627 (1989)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Feller, W.: An introduction to probability theory and its applications. Wiley-India (2009)Google Scholar
  22. 22.
    Wald, A.: Sequential Tests of Statistical Hypotheses. The Annals of Mathematical Statistics 16, 117–186 (1945)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Herzog, J.: Dynamics Sensor Validation for Reusable Launch Vehicle Propulsion. Presented at 34th AIAA/ASME/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, US, July 13-15 (1998)Google Scholar
  24. 24.
    Taylor, J.: Multi-item sales forecasting with total and split exponential smoothing. Journal of the Operational Research Society (2010)Google Scholar
  25. 25.
    Gelper, S., Fried, R., Croux, C.: Robust forecasting with exponential and Holt-Winters smoothing. Journal of Forecasting 29, 285–300 (2010)MathSciNetMATHGoogle Scholar
  26. 26.
    Holt, C.: Forecasting trends and seasonals by exponentially weighted moving averages. ONR Memorandum 52 (1957)Google Scholar
  27. 27.
    Brown, R.: Statistical forecasting for inventory control. McGraw-Hill, New York (1959)MATHGoogle Scholar
  28. 28.
    Gardner Jr., E.: Exponential smoothing: The state of the art. Journal of Forecasting 4, 1–28 (1985)CrossRefGoogle Scholar
  29. 29.
    Makridakis, S., Wheelwright, S., Hyndman, R.: Forecasting methods and applications. Wiley-India (2008)Google Scholar
  30. 30.
    Ng, T., Skitmore, M., Wong, K.: Using genetic algorithms and linear regression analysis for private housing demand forecast. Building and Environment 43, 1171–1184 (2008)CrossRefGoogle Scholar
  31. 31.
    Xia, B., Zhao, C.: The Application of Multiple Regression Analysis Forecast in Economical Forecast: The Demand Forecast of Our Country Industry Lavation Machinery in the Year of 2008 and 2009. In: Second International Workshop on Knowledge Discovery and Data Mining, WKDD 2009, pp. 405–408 (2009)Google Scholar
  32. 32.
    Pinson, P., Nielsen, H., Madsen, H., Nielsen, T.: Local linear regression with adaptive orthogonal fitting for the wind power application. Statistics and Computing 18, 59–71 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Feller, S., Pauli, D., Kmiecik, F.: Robust AAKR and Modern Signal Transformation Methods for Fault Detection and Analysis. In: Proceedings of the 37th ESReDA Seminar, Baden, CH, pp. 57–63 (2009)Google Scholar
  34. 34.
    Zeileis, A., Leisch, F., Kleiber, C., Hornik, K.: Monitoring Structural Change in Dynamic Econometric Models. Journal of Applied Econometrics 20, 99–121 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dirk Pauli
    • 1
  • Yann Lorion
    • 1
  • Sebastian Feller
    • 2
  • Benjamin Rupp
    • 2
  • Ingo J. Timm
    • 3
  1. 1.Information Systems and Simulation, Institute of Computer ScienceGoethe-University FrankfurtFrankfurt/MainGermany
  2. 2.FCE Frankfurt Consulting Engineers GmbHHochheim/MainGermany
  3. 3.Department IV, Institute of Business Information Systems, Business Informatics IUniversity of TrierTrierGermany

Personalised recommendations