Skip to main content

Stability Analysis and Hopf-Type Bifurcation of a Fractional Order Hindmarsh-Rose Neuronal Model

  • Conference paper
Advances in Neural Networks – ISNN 2012 (ISNN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7367))

Included in the following conference series:

Abstract

In this paper, the dynamical behaviors of a fractional order Hindmarsh-Rose neuronal model are studied. First, based on the stability theory of fractional order systems, some sufficient conditions for the stability and Hpof-type bifurcation are given for such fractional order system. Then, the frequency and amplitude of periodic oscillations are determined by numerical simulations. It is shown that the frequency of oscillations incurs a small variation with respect to different values of the order, while the amplitude of oscillations gets larger as the order is increased. Numerical simulations are performed to verified the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Bagley, R.L., Calico, R.A.: Fractional Order State Equations for the Control of Viscoelastically Damped Structures. J. Guid. Control Dyn. 14, 304–311 (1991)

    Article  Google Scholar 

  3. Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear Approximation of Transfer Function with a Pole of Fractional Order. IEEE Trans Autom. Control AC 29, 441–444 (1984)

    Article  MATH  Google Scholar 

  4. Ichise, M., Nagayanagi, Y., Kojima, T.: An Analog Simulation of Noninteger Order Transfer Functions for Analysis of Electrode Process. J. Electroanal. Chem. 33, 253–265 (1971)

    Article  Google Scholar 

  5. Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)

    Google Scholar 

  6. Laskin, N.: Fractional Market Dynamics. Phys. A 287, 482–492 (2000)

    Article  MathSciNet  Google Scholar 

  7. Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Levy Processes and Fractional Kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)

    Article  Google Scholar 

  8. Cole, K.S.: Electric Conductance of Biological Systems. In: Proc. Cold Spring Harbor Symp. Quant. Biol., New York, pp. 107–116 (1993)

    Google Scholar 

  9. Anastasio, T.J.: The Fractional Order Dynamics of Brainstem Vestibuleoculumotor Neurons. Biol. Cybern. 72, 69–79 (1994)

    Article  Google Scholar 

  10. Gopalsamy, K., Leung, I.: Convergence under Dynamical Thresholds with Delays. IEEE Trans. Neural Netw. 8, 341–348 (1997)

    Article  Google Scholar 

  11. Xu, X., Hua, H.Y., Wang, H.L.: Stability Switches, Hopf Bifurcation and Chaos of a Neuron Model with Delay-Dependent Parameters. Phys. Lett. A 354, 126–136 (2006)

    Article  Google Scholar 

  12. Cao, J., Xiao, M.: Stability and Hopf bifurcation in a Simplified BAM Neural Network with Two Time Delays. IEEE Trans. Neural Netw. 18, 416–430 (2007)

    Article  Google Scholar 

  13. Matignon, D.: Stability Results for Fractional Differential Equations with Applications to Control Processing. In: Proceedings IMACS-SMC 1996, Lille, France, pp. 963–968 (1996)

    Google Scholar 

  14. Ahmed, E., El-Sayed, A., El-Saka, H.: Equilibrium Points, Stability and Numerical Solutions of Fractional Order Predator-Prey and Rabies Models. J. Math. Anal. Appl. 325, 542–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. FitzHugh, R.: Impulses and Physiological State in Theoretical Models of Nerve Membrane. Biophy. J. 1, 445–467 (1961)

    Article  Google Scholar 

  16. Nagumo, J., Arimoto, S., Yoshizawa, S.: An Active Pulse Transmission Line Simulating Nerve Axon. In: Proc. IRE, vol. 50, pp. 2061–2070 (1962)

    Google Scholar 

  17. Tsuji, S., Ueta, T., Kamakami, H., Fujii, H., Aihara, K.: Bifurcations in Two-Dimensional Hindmarsh-Rose Type Model. Int. J. Bifurc. Chaos 17, 985–998 (2007)

    Article  MATH  Google Scholar 

  18. Gantmacher, F.R.: The Theory of Matrices. Chelsea, New York (1959)

    MATH  Google Scholar 

  19. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlin. Dynam. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiao, M. (2012). Stability Analysis and Hopf-Type Bifurcation of a Fractional Order Hindmarsh-Rose Neuronal Model. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds) Advances in Neural Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer Science, vol 7367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31346-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31346-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31345-5

  • Online ISBN: 978-3-642-31346-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics