Skip to main content

Robust Global Registration through Geodesic Paths on an Empirical Manifold with Knee MRI from the Osteoarthritis Initiative (OAI)

  • Conference paper
Biomedical Image Registration (WBIR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7359))

Included in the following conference series:

Abstract

Accurate affine registrations are crucial for many applications in medical image analysis. Within the Osteoarthritis Initiative (OAI) dataset we have observed a failure rate of approximately 4% for direct affine registrations of knee MRI without manual initialisation. Despite this, the problem of robust affine registration has not received much attention in recent years. With the increase in large medical image datasets, manual intervention is not a suitable solution to achieve successful affine registrations. We introduce a framework to improve the robustness of affine registrations without prior manual initialisations. We use 10,307 MR images from the large dataset available from the OAI to model the low dimensional manifold of the population of unregistered knee MRIs as a sparse k-nearest-neighbour graph. Affine registrations are computed in advance for nearest neighbours only. When a pairwise image registration is required the shortest path across the graph is extracted to find a geodesic path on the empirical manifold. The precomputed affine transformations on this path are composed to find an estimated transformation. Finally a refinement step is used to further improve registration accuracy. Failure rates of geodesic affine registrations reduce to 0.86% with the registration framework proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tamez-Pena, J., Gonzalez, P., Farber, J., Baum, K., Schreyer, E., Totterman, S.: Atlas based method for the automated segmentation and quantification of knee features: Data from the osteoarthritis initiative. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1484–1487 (2011)

    Google Scholar 

  2. Fripp, J., Crozier, S., Warfield, S.K., Ourselin, S.: Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Transactions on Medical Imaging 29(1), 55–64 (2010)

    Article  Google Scholar 

  3. Carballido-Gamio, J., Majumdar, S.: Atlas-based knee cartilage assessment. Magnetic Resonance in Medicine 66(2), 575–581 (2011)

    Article  Google Scholar 

  4. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast mr images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  5. Donoghue, C., Rao, A., Bull, A.M.J., Rueckert, D.: Manifold learning for automatically predicting articular cartilage morphology in the knee with data from the osteoarthritis initiative (oai). In: SPIE Medical Imaging 2011: Image Processing, Proc., vol. 7962, p. 12 (2011)

    Google Scholar 

  6. Yang, G., Stewart, C.V., Sofka, M., Tsai, C.L.: Registration of challenging image pairs: Initialization, estimation, and decision. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1973–1989 (2007)

    Article  Google Scholar 

  7. Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Physics in Medicine and Biology 46(3), R1–R45 (2001)

    Google Scholar 

  8. Studholme, C.: An overlap invariant entropy measure of 3d medical image alignment. Pattern Recognition 32(1), 71–86 (1999)

    Article  Google Scholar 

  9. Hamm, J., Ye, D.H., Verma, R., Davatzikos, C.: Gram: A framework for geodesic registration on anatomical manifolds. Medical Image Analysis 14(5), 633–642 (2010)

    Article  Google Scholar 

  10. Gerber, S., Tasdizen, T., Thomas Fletcher, P., Joshi, S., Whitaker, R.: Manifold modeling for brain population analysis. Medical Image Analysis 14(5), 643–653 (2010)

    Article  Google Scholar 

  11. Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D.: Leap: learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)

    Article  Google Scholar 

  12. Jia, H., Wu, G., Wang, Q., Shen, D.: Absorb: Atlas building by self-organized registration and bundling. NeuroImage 51(3), 1057–1070 (2010)

    Article  Google Scholar 

  13. Peterfy, C., Schneider, E., Nevitt, M.: The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis and Cartilage 16(12), 1433–1441 (2008)

    Article  Google Scholar 

  14. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tenenbaum, J.B.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  16. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse of dimensionality. In: STOC 1998 Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604–613 (1998)

    Google Scholar 

  17. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9), 509–517 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Donoghue, C.R., Rao, A., Bull, A.M.J., Rueckert, D. (2012). Robust Global Registration through Geodesic Paths on an Empirical Manifold with Knee MRI from the Osteoarthritis Initiative (OAI). In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2012. Lecture Notes in Computer Science, vol 7359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31340-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31340-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31339-4

  • Online ISBN: 978-3-642-31340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics