External Beam BNCT for Glioblastoma Multiforme

Chapter

Abstract

Despite the recent improvements in multimodal therapies that include surgery, radiotherapy, and chemotherapy, glioblastoma multiforme (GBM) easily recurs and continues to have a median overall survival time of less than 1.5 year.

Eight nonrandomized prospective external beam BNCT trials have been performed over 15 years. The p-dihydroxyboryl-phenylalanine (BPA)-mediated BNCT was performed in the Brookhaven National Laboratory (BNL) trial, the trial of Harvard/MIT, the trial of University of Helsinki and VTT (Technical Research Centre of Finland), and the trial of Studsvik. The sulfhydryl borane Na2B12H11SH (BSH)-mediated BNCT was performed in the European Organisation for Research and Treatment of Cancer (EORTC) 11961 trial and the trial of Nuclear Research Institute (NRI) in Rez. The combination of BPA and BSH was used in the trial of Osaka Medical College and the trial of University of Tsukuba and JAEA. In the trial of Studsvik and Osaka Medical College, the long-term infusion of BPA was employed. Additional photon irradiation was performed in the trial of Osaka Medical College and the trial of University of Tsukuba and Japan Atomic Energy Agency (JAEA). Four of eight studies, even in subgroups of the patient population, suggest that external beam BNCT may improve survival in newly diagnosed GBM. Of these eight studies, four primarily phase I trials demonstrated only modest toxicity. The median time to progression and the median survival time vary from 6 to 12 months and 12 to 27 months, respectively.

Keywords

Median Survival Time Epithermal Neutron Osaka Medical College Japan Atomic Energy Agency Nuclear Research Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial. Lancet Oncol 7:392–401PubMedCrossRefGoogle Scholar
  2. 2.
    Nimsky C, Ganslandt O, von Keller B, Fahlbusch R (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 28:482–487PubMedCrossRefGoogle Scholar
  3. 3.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  4. 4.
    Vinjamuri M, Adumala RR, Altaha R et al (2009) Comparative analysis of temozolomide (TMZ) versus 1,3-bis (2-chloroethyl)-1 nitrosourea (BCNU) in newly diagnosed glioblastoma multiforme (GBM) patients. J Neurooncol 91:221–225PubMedCrossRefGoogle Scholar
  5. 5.
    Ali SA, McHayleh WM, Ahmad A et al (2008) Bevacizumab and irinotecan therapy in glioblastoma multiforme: a series of 13 cases. J Neurosurg 109:268–272PubMedCrossRefGoogle Scholar
  6. 6.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729PubMedCrossRefGoogle Scholar
  7. 7.
    Walker MD, Alexander E Jr, Hunt WE et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: cooperative clinical trial. J Neurosurg 49:333–343PubMedCrossRefGoogle Scholar
  8. 8.
    Walker MD, Green SB, Byar DP et al (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329PubMedCrossRefGoogle Scholar
  9. 9.
    Kristiansen K, Hagen S, Kollevold T et al (1981) Combined modality therapy of operated astrocytomas grade III and IV: confirmation of the value of postoperative irradiation and lack of potentiation of bleomycin on survival time: a prospective multicenter trial of the Scandinavian Glioblastoma Study Group. Cancer 47:649–652PubMedCrossRefGoogle Scholar
  10. 10.
    Sandberg-Wollheim M, Malmstrom P, Stromblad LG et al (1991) A randomized study of chemotherapy with procarbazine, vincristine, and the lomustine with and without radiation therapy for astrocytoma grade 3 and/or 4. Cancer 68:22–29PubMedCrossRefGoogle Scholar
  11. 11.
    Anderson AP (1978) Postoperative irradiation of glioblastomas. Results in a randomized series. Acta Radiol Oncol Radiat Phys Biol 17:475–484Google Scholar
  12. 12.
    Bleehen NM, Stennning SP (1991) A Medical Research Council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. Br J Cancer 64:769–774PubMedCrossRefGoogle Scholar
  13. 13.
    Gasper LE, Fisher BJ, Macdonald DR et al (1992) Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. Int J Radiat Oncol Biol Phys 24:55–57CrossRefGoogle Scholar
  14. 14.
    Oppitz U, Maessen D, Zunterer H et al (1999) 3D-recurrence-patterns of glioblastomas after CT-planned postoperative irradiation. Radiother Oncol 53:53–57PubMedCrossRefGoogle Scholar
  15. 15.
    Tanaka M, Ino Y, Nakagawa K et al (2005) High-dose conformal radiotherapy for supratentorial malignant glioma: a historical comparison. Lancet Oncol 6:953–960PubMedCrossRefGoogle Scholar
  16. 16.
    Nwokedi EC, DiBase SJ, Jabbour S, Herman J, Amin P, Chin LS et al (2002) Gamma knife stereotactic radiosurgery for patients with glioblastoma multiforme. Neurosurgery 50:41–47PubMedGoogle Scholar
  17. 17.
    Baumert BG, Lutterbach J, Bernays R et al (2003) Fractionated stereotactic radiotherapy boost after post-operative radiotherapy in patients with high-grade gliomas. Radiother Oncol 67:183–190PubMedCrossRefGoogle Scholar
  18. 18.
    Souhami L, Seiferheld W, Brachman D et al (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93–05 protocol. Int J Radiat Oncol Biol Phys 60:853–860PubMedCrossRefGoogle Scholar
  19. 19.
    Fitzek MM, Thornton AF, Rabinov JD et al (1990) Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of a phase II prospective trial. J Neurosurg 91:251–260Google Scholar
  20. 20.
    Halperin EC, Burger PC, Bullard DE (1988) The fallacy of the localized supratentorial malignant glioma. Int J Radiat Oncol Biol Phys 15:505–509PubMedCrossRefGoogle Scholar
  21. 21.
    Sullivani FJ, Herscher LL, Cook JA et al (1994) National Cancer Institute (phase II) study of high-grade glioma treated with accelerated hyperfractionated radiation and iododeoxyuridine: results in anaplastic astrocytomas. Int J Radiat Oncol Biol Phys 30:583–590CrossRefGoogle Scholar
  22. 22.
    Hideghety K, Sauerwein W, Wittig A et al (2003) Tissue uptake of BSH in patients with glioblastoma in the EORTC 11961 phase I BNCT trial. J Neurooncol 62:145–156PubMedGoogle Scholar
  23. 23.
    Wittig A, Hideghety K, Paquis P et al (2002) Current clinical results of the EORTC-study 11961. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 1117–1122Google Scholar
  24. 24.
    Diaz AZ (2003) Assessment of the results from the phase I/II boron neutron capture therapy trials at the Brookhaven National Laboratory from a clinician’s point of view. J Neurooncol 62:101–109PubMedGoogle Scholar
  25. 25.
    Chanana AD, Capala J, Chadha M et al (1999) Boron neutron capture therapy for glioblastoma multiforme: interim results from the phase I/II dose-escalation studies. Neurosurgery 44:1182–1193PubMedGoogle Scholar
  26. 26.
    Busse PM, Harling OK, Palmer MR et al (2003) A critical examination of the results from the Harvard-MIT NCT program phase I clinical trial of neutron capture therapy for intracranial disease. J Neurooncol 62:111–121PubMedGoogle Scholar
  27. 27.
    Palmer MR, Goorley JT, Kiger WS III et al (2002) Treatment planning and dosimetry for the Harvard-MIT phase I clinical trial of cranial neutron capture therapy. Int J Radiat Oncol Biol Phys 53:1361–1379PubMedCrossRefGoogle Scholar
  28. 28.
    Joensuu H, Kankaanranta L, Seppälä T et al (2003) Boron neutron capture therapy of brain tumors: clinical trials at the Finnish facility using boronophenylalanine. J Neurooncol 62:123–134PubMedGoogle Scholar
  29. 29.
    Kankaanranta L, Koivunoro H, Kortesniemi M et al (2008) BPA-based BNCT in the treatment of glioblastoma multiforme: a dose escalation study. In: Zonta A, Altieri S, Roveda L, Barth R (eds) Proceedings of the 13th International Congress on Neutron Capture Therapy “A new option against cancer”. ENEA, Italian National Agency for New Technologies, Energy and the Environment. ISBN: 88-8286-167-8, Florenz, pp. 30–32Google Scholar
  30. 30.
    Henriksson R, Capala J, Michanek A et al (2008) Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). Radiother Oncol 88:183–191PubMedCrossRefGoogle Scholar
  31. 31.
    Burian J, Marek M, Rataj J et al (2002) Report on the first patient group of the phase I BNCT trial at the LVR-15 reactor. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 1107–1112Google Scholar
  32. 32.
    Kawabata S, Miyatake S, Kuroiwa T et al (2008) Boron neutron capture therapy for newly diagnosed glioblastoma. J Radiat Res (Tokyo) 50:51–60CrossRefGoogle Scholar
  33. 33.
    Yamamoto T, Nakai K, Kageji T et al (2009) Boron neutron capture therapy for newly diagnosed glioblastoma. Radiother Oncol 91:80–84PubMedCrossRefGoogle Scholar
  34. 34.
    Ono K, Masunaga SI, Suzuki M et al (1999) The combined effect of boronophenylalanine and borocaptate in boron neutron capture therapy for SCCVII tumors in mice. Int J Radiat Oncol Biol Phys 43:431–436PubMedCrossRefGoogle Scholar
  35. 35.
    Yoshida F, Matsumura A, Shibata Y et al (2002) Cell cycle dependence of boron uptake from two boron compounds used for clinical neutron capture therapy. Cancer Lett 87:135–141CrossRefGoogle Scholar
  36. 36.
    Soloway AH, Hatanaka H, Davis MA (1967) Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. J Med Chem 10:714–747PubMedCrossRefGoogle Scholar
  37. 37.
    Coderre JA, Turcotte JC, Riley KJ et al (2003) Boron neutron capture therapy: cellular targeting of high linear energy transfer radiation. Technol Cancer Res Treat 2:1–21Google Scholar
  38. 38.
    Joel DD, Coderre JA, Micca PL, Nawrocky MM (1999) Effect of dose and infusion time on the delivery of p-boronophenylalanine for neutron capture therapy. J Neurooncol 41:213–221PubMedCrossRefGoogle Scholar
  39. 39.
    Smith D, Chandra S, Barth R et al (2001) Quantitative imaging and microlocalization of boron-10 in brain tumors and infiltrating tumor cells by SIMS ion microscopy: relevance to neutron capture therapy. Cancer Res 61:8179–8187PubMedGoogle Scholar
  40. 40.
    Morris GM, Coderre JA, Hopewell JW et al (1997) Response of the central nervous system to fractionated boron neutron capture irradiation: studies with borocaptate sodium. Int J Radiat Biol 71:185–192PubMedCrossRefGoogle Scholar
  41. 41.
    Coderre JA, Morris GM, Micca PL et al (1995) Comparative assessment of single-dose and fractionated boron neutron capture therapy. Radiat Res 144:310–317PubMedCrossRefGoogle Scholar
  42. 42.
    Miyatake S, Kajimoto Y, Kawabata S et al (2005) Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: an efficacy study based on findings on neuroimages. J Neurosurg 103:1000–1009PubMedCrossRefGoogle Scholar
  43. 43.
    Barth RF, Grecula JC, Yang W et al (2004) Combination of boron neutron capture therapy and external beam radiotherapy for brain tumors. Int J Radiat Oncol Biol Phys 58:267–277PubMedCrossRefGoogle Scholar
  44. 44.
    Sweet WH, Soloway AH, Brownell GL (1963) Boron-slow neutron capture therapy of gliomas. Acta Radiol 1:114–121CrossRefGoogle Scholar
  45. 45.
    Yamamoto T, Matsumura A, Yamamoto K et al (2002) In-phantom two-dimensional thermal neutron distribution for intraoperative boron neutron capture therapy of brain tumours. Phys Med Biol 47:2387–2396PubMedCrossRefGoogle Scholar
  46. 46.
    Imahori Y, Ueda S, Ohmori Y et al (1998) Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part II. Clin Cancer Res 4:1833–1841PubMedGoogle Scholar
  47. 47.
    Nariai T, Ishiwata K, Kimura Y et al (2008) PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma. In: Zonta A, Altieri S, Roveda L, Barth R (eds) Proceedings of the 13th international congress of neutron capture therapy. A new opinion against cancer. ENEA, Roma, pp 244–247Google Scholar
  48. 48.
    Coderre JA, Hopewell JW, Turcottea JC et al (2004) Tolerance of normal human brain to boron neutron capture therapy. Appl Radiat Isot 61:1083–1087PubMedCrossRefGoogle Scholar
  49. 49.
    Vos MJ, Turowski B, Zanella FE et al (2005) Radiologic findings in patients treated with boron neutron capture therapy for glioblastoma multiforme within EORTC trial 11961. Int J Radiat Oncol Biol Phys 61:392–399PubMedCrossRefGoogle Scholar
  50. 50.
    Honová H, Safanda M, Petruzelka L et al (2004) Neutron capture therapy in the treatment of glioblastoma multiforme. Initial experience in the Czech Republic. Cas Lec Cesk 143:44–47Google Scholar
  51. 51.
    Capala J, Stenstam BH, Sköld K et al (2003) Boron neutron capture therapy for glioblastoma multiforme: clinical studies in Sweden. J Neurooncol 62:135–144PubMedGoogle Scholar
  52. 52.
    Shrieve DC, Eben A, Black PM et al (1999) Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost: prognostic factors and long-term outcome. J Neurosurg 90:72–77PubMedCrossRefGoogle Scholar
  53. 53.
    Gannett D, Stea B, Lulu B et al (1995) Stereotactic radiosurgery as an adjunct to surgery and external beam radiotherapy in the treatment of patients with malignant gliomas. Int J Radiat Oncol Biol Phys 33:461–468PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Neurosurgery and Radiation Oncology, Faculty of MedicineUniversity of TsukubaTsukuba, IbarakiJapan
  2. 2.Department of Neurosurgery, Faculty of MedicineUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations