Advertisement

Treatment Planning

  • W. S. KigerIII
  • Hiroaki Kumada
Chapter

Abstract

Treatment planning for neutron capture therapy (NCT) involves computation and analysis of the radiation dose distribution in a patient for determination of the neutron beam orientations and radiation fluence (monitor units) to enable delivery of an optimized radiation dose distribution that will comply with the dose prescription and optimize the dose to the target volume while respecting dose limits for normal tissues and organs at risk. Treatment planning for NCT differs markedly from treatment planning for photons or electrons in conventional radiotherapy and, in some ways, is significantly more complex. Unlike the treatment planning systems for conventional radiotherapy, NCT treatment planning systems exclusively rely on Monte Carlo simulation for dose calculations because of the complex, scatter-dominated nature of the radiation transport processes involved. This chapter discusses technical and clinical aspects of NCT treatment planning, including computational methods and the treatment planning process.

Keywords

Thermal Neutron Clinical Target Volume Neutron Beam Dose Calculation Gross Tumor Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Drs. C. Wojnecki and J.R. Albritton for helpful discussions, for critically reviewing the manuscript, and for assistance producing Fig. 16.2.

References

  1. 1.
    Nigg DW, Wheeler FJ, Wessol DE, Capala J, Chadha M (1997) Computational dosimetry and treatment planning for boron neutron capture therapy. J Neurooncol 33:93–104PubMedCrossRefGoogle Scholar
  2. 2.
    Nigg DW (2003) Computational dosimetry and treatment planning considerations for neutron capture therapy. J Neurooncol 62:75–86PubMedGoogle Scholar
  3. 3.
    Nievaart VA, Daquino GG, Moss RL (2007) Monte Carlo based treatment planning systems for boron neutron capture therapy in Petten, the Netherlands. J Phys Conf Ser 74:021012, 10.1088/1742-6596/74/1/021012CrossRefGoogle Scholar
  4. 4.
    Zamenhof RG, Clement S, Lin K, Lui C, Ziegelmiller D, Harling OK (1989) Monte Carlo treatment planning and high-resolution alpha-track autoradiography for neutron capture therapy. Strahlenther Onkol 165:186–188Google Scholar
  5. 5.
    Zamenhof RG, Clement SD, Harling OK, Brenner JF, Wazer DE, Madoc-Jones H, Yanch JC (1990) Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors. In: Harling OK, Zamenhof RG, Bernard JA (eds) Neutron beam design, development and performance for neutron capture therapy. Plenum Publishing Corp, New YorkGoogle Scholar
  6. 6.
    Zamenhof R, Redmond E, Solares G, Katz D, Riley K, Kiger S, Harling O (1996) Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data. Int J Radiat Oncol Biol Phys 35:383–397PubMedCrossRefGoogle Scholar
  7. 7.
    Gonzalez SJ, Carando DG, Santa Cruz GA, Zamenhof RG (2005) Voxel model in BNCT treatment planning: performance analysis and improvements. Phys Med Biol 50:441–458PubMedCrossRefGoogle Scholar
  8. 8.
    Goorley JT, Kiger WS III, Zamenhof RG (2002) Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models. Med Phys 29:145–156PubMedCrossRefGoogle Scholar
  9. 9.
    Kiger III WS, Albritton JR, Hochberg AG, Goorley JT (2004) Performance enhancements of MCNP4B, MCNP5, and MCNPX for Monte Carlo radiotherapy planning calculations in lattice geometries. Los Alamos National Laboratory, LA-UR-04-4751 and LA-UR-04-6972, http://laws.lanl.gov/x5/MCNP/publication/pdf/LA-UR-04-4751.pdf and http://laws.lanl.gov/x5/MCNP/publication/pdf/LA-UR-04-6972.pdf
  10. 10.
    Booth TE, Brown FB, Bull JS, Forster RA, Goorley JT, Hughes HG, Martz RL, Prael RE, Sood A, Sweezy JE, Zukaitis AJ (2008) MCNP5 1.50 Release Notes. Los Alamos National Laboratory, LA-UR-08-2300Google Scholar
  11. 11.
    Wallace SA, Allen BJ, Mathur JN (1996) Monte Carlo neutron photon treatment planning calculations: modeling from CT scans with variable voxel size. In: Mishima Y (ed) Cancer neutron capture therapy. Plenum Press, New YorkGoogle Scholar
  12. 12.
    Kumada H, Yamamoto K, Matsumura A, Yamamoto T, Nakagawa Y, Nakai K, Kageji T (2004) Verification of the computational dosimetry system in JAERI (JCDS) for boron neutron capture therapy. Phys Med Biol 49:3353–3365PubMedCrossRefGoogle Scholar
  13. 13.
    Kumada H, Yamamoto K, Yamamoto T, Nakai K, Nakagawa Y, Kageji T, Matsumura A (2004) Improvement of dose calculation accuracy for BNCT dosimetry by the multi-voxel method in JCDS. Appl Radiat Isot 61:1045–1050PubMedCrossRefGoogle Scholar
  14. 14.
    Frandsen MW (1998) Rapid geometry interrogation for a uniform volume element-based Monte Carlo particle transport simulation. M.S. thesis, Department of Computer Science, Montana State University, BozemanGoogle Scholar
  15. 15.
    Frandsen MW, Wessol DE, Wheeler FJ, Babcock RS, Harkin GJ, Starkey JD (1998) Rapid geometry interrogation for a uniform volume element-based Monte Carlo particle transport simulation. In: Proceedings of the 1998 American Nuclear Society Radiation Protection and Shielding Division topical meeting. American Nuclear Society, La Grange Park, 1998Google Scholar
  16. 16.
    Wheeler FJ, Wessol DE, Wemple CA, Nigg DW, Albright CL, Cohen MT, Frandsen MW, Harkin GJ, Rossmeier MB (2001) SERA – an advanced treatment planning system for neutron therapy. In: Current status of neutron capture therapy. International Atomic Energy Agency, IAEA-TECDOC-1223, Vienna, 2001Google Scholar
  17. 17.
    Wheeler FJ, Nigg DW (1992) Three-dimensional radiation dose distribution analysis for boron neutron capture therapy. Nucl Sci Eng 110:16–31Google Scholar
  18. 18.
    Nigg DW (1994) Methods for radiation dose distribution analysis and treatment planning in boron neutron capture therapy. Int J Radiat Oncol Biol Phys 28:1121–1134PubMedCrossRefGoogle Scholar
  19. 19.
    Wessol DE, Wheeler FJ (1993) Creating and using a type of free-form geometry in Monte Carlo particle transport. Nucl Sci Eng 113:314–323Google Scholar
  20. 20.
    Verbakel WF, Hideghety K, Morrissey J, Sauerwein W, Stecher-Rasmussen F (2002) Towards in vivo monitoring of neutron distributions for quality control of BNCT. Phys Med Biol 47:1059–1072PubMedCrossRefGoogle Scholar
  21. 21.
    Albritton JR, Kiger WS III (2008) Neutron beam source definition techniques for NCT treatment planning. In: Zonta A, Altieri S, Roveda L, Barth R (eds) Proceedings of the 13th international congress on neutron capture therapy: a new option against cancer. ENEA, RomeGoogle Scholar
  22. 22.
    Albritton JR (2009) Computational aspects of treatment planning for neutron capture therapy. Ph.D. thesis, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  23. 23.
    Sempau J, Sanchez-Reyes A, Salvat F, ben Tahar HO, Jiang SB, Fernandez-Varea JM (2001) Monte Carlo simulation of electron beams from an accelerator head using PENELOPE. Phys Med Biol 46:1163–1186PubMedCrossRefGoogle Scholar
  24. 24.
    Palmer MR, Goorley JT, Kiger WS III, Busse PM, Riley KJ, Harling OK, Zamenhof RG (2002) Treatment planning and dosimetry for the Harvard-MIT phase I clinical trial of cranial neutron capture therapy. Int J Radiat Oncol Biol Phys 53:1361–1379PubMedCrossRefGoogle Scholar
  25. 25.
    Seppälä T, Serén T, Auterinen I (2001) Source characterisation for the rtt_MC treatment planning program at FiR 1. In: Hawthorne FM, Shelley K, Wiersema RJ (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  26. 26.
    Seppälä T (2002) FiR 1 epithermal neutron beam model and dose calculation for treatment planning in neutron capture therapy. Ph.D. thesis, Department of Physical Sciences, University of Helsinki, HelsinkiGoogle Scholar
  27. 27.
    van der Marck SC, Hogenbirk A (2002) ORANGE, a Monte Carlo dose engine for BNCT. In: Sauerwein W, Moss RL, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, BolognaGoogle Scholar
  28. 28.
    X-5 Monte Carlo Team (2003) MCNP – a general Monte Carlo N-particle transport Code, Version 5. Los Alamos National Laboratory, LA-UR-03-1987Google Scholar
  29. 29.
    Goorley JT, McKinney G, Adams K, Estes G (2001) MCNP enhancements, parallel computing and error analysis for BNCT. In: Hawthorne FM, Shelley K, Wiersema RJ (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  30. 30.
    Goorley T (2004) MCNP5 Tally enhancements for lattices (aka Lattice Speed Tally Patch). Los Alamos National Laboratory, LA-UR-04-3400, http://mcnp-green.lanl.gov/publication/pdf/Lattice_Speed_Tally.pdf
  31. 31.
    Moran JM, Nigg DW, Wheeler FJ, Bauer WF (1992) Macroscopic geometric heterogeneity effects in radiation dose distribution analysis for boron neutron capture therapy. Med Phys 19:723–732PubMedCrossRefGoogle Scholar
  32. 32.
    Ingersoll DT, Slater CO, Redmond EL II, Zamenhof RG (1997) Comparison of TORT and MCNP dose calculations for BNCT treatment planning. In: Larsson B, Crawford J, Weinreich R (eds) Advances in neutron capture therapy. Elsevier, AmsterdamGoogle Scholar
  33. 33.
    Kotiluoto P, Hiisamaki P, Savolainen S (2001) Application of the new MultiTrans SP3 radiation transport code in BNCT dose planning. Med Phys 28:1905–1910PubMedCrossRefGoogle Scholar
  34. 34.
    Albertson BJ, Blue TE, Niemkiewicz J (2001) An investigation on the use of removal-diffusion theory for BNCT treatment planning: a method for determining proper removal-diffusion parameters. Med Phys 28:1898–1904PubMedCrossRefGoogle Scholar
  35. 35.
    Raaijmakers CP, Bruinvis IA, Nottelman EL, Mijnheer BJ (1998) A fast and accurate treatment planning method for boron neutron capture therapy. Radiother Oncol 46:321–332PubMedCrossRefGoogle Scholar
  36. 36.
    Wojnecki C, Wittig A, Bourhis-Martin E (2002) Patient geometry modeling for treatment planning. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, BolognaGoogle Scholar
  37. 37.
    International Commission on Radiation Units and Measurements (1989) Tissue substitutes in radiation dosimetry and measurement. ICRU Report 44Google Scholar
  38. 38.
    International Commission on Radiation Units and Measurements (1992) Photon, electron, proton, and neutron interaction data for body tissues. ICRU Report 46Google Scholar
  39. 39.
    Brooks RA, Di Chiro G, Keller MR (1980) Explanation of cerebral white-gray contrast in computed tomography. J Comput Assist Tomogr 4:489–491PubMedCrossRefGoogle Scholar
  40. 40.
    Ye SJ (1999) Boron self-shielding effects on dose delivery of neutron capture therapy using epithermal beam and boronophenylalanine. Med Phys 26:2488–2493PubMedCrossRefGoogle Scholar
  41. 41.
    Goorley JT (2002) A comparison of three gadolinium based approaches to cancer therapy. Ph.D. thesis, Nuclear Engineering Department, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  42. 42.
    Binello E (1999) Efficacy of boron neutron capture synovectomy in an animal model. Ph.D. thesis, Nuclear Engineering Department, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  43. 43.
    Albritton JR (2001) Analysis of the SERA treatment planning system and its use in boron neutron capture synovectomy. M.S. thesis, Nuclear Engineering Department, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  44. 44.
    Wojnecki C, Green S (2002) A preliminary comparative study of two treatment planning systems developed for boron neutron capture therapy: MacNCTPlan and SERA. Med Phys 29:1710–1715PubMedCrossRefGoogle Scholar
  45. 45.
    Rogus RD, Harling OK, Yanch JC (1994) Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor. Med Phys 21:1611–1625PubMedCrossRefGoogle Scholar
  46. 46.
    Binns PJ, Riley KJ, Harling OK, Kiger WS III, Munck af Rosenschold PM, Giusti V, Capala J, Skold K, Auterinen I, Seren T, Kotiluoto P, Uusi-Simola J, Marek M, Viererbl L, Spurny F (2005) An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements. Med Phys 32:3729–3736PubMedCrossRefGoogle Scholar
  47. 47.
    Coderre JA, Morris GM (1999) The radiation biology of boron neutron capture therapy. Radiat Res 151:1–18PubMedCrossRefGoogle Scholar
  48. 48.
    Goorley T, Capala J, Wheeler F, Kiger WS III, Zamenhof R, Palmer MR, Nigg D (2001) A comparison of two treatment planning programs: MacNCTPlan and BNCT_RTPE. In: Hawthorne FM, Shelley K, Wiersema RJ (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  49. 49.
    Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Ma CM, Rogers DW, Seuntjens J, Sheikh-Bagheri D, Siebers JV (2007) Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853PubMedCrossRefGoogle Scholar
  50. 50.
    Albritton JR, Binns PJ, Riley KJ, Coderre JA, Harling OK, Kiger WS III (2006) Comparison of doses delivered in clinical trials of neutron capture therapy in the USA. In: Nakagawa Y, Kobayashi T, Fukuda H (eds) Advances in neutron capture therapy. International Society for Neutron Capture Therapy, TakamatsuGoogle Scholar
  51. 51.
    Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Van Dyke J (1998) American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys 25:1773–1829PubMedCrossRefGoogle Scholar
  52. 52.
    Albritton JR, Kiger WS III (2006) Development of reference problems for neutron capture therapy treatment planning systems. In: Nakagawa Y, Kobayashi T, Fukuda H (eds) Advances in neutron capture therapy. International Society for Neutron Capture Therapy, TakamatsuGoogle Scholar
  53. 53.
    Wojnecki C, Green S (2001) A computational study into the use of polyacrylamide gel and A-150 plastic as brain tissue substitutes for boron neutron capture therapy. Phys Med Biol 46:1399–1405PubMedCrossRefGoogle Scholar
  54. 54.
    Kiger WS III, Santa Cruz GA, González SJ, Hsu F-Y, Riley KJ, Binns PJ, Harling OK, Palmer MR, Busse PM, Zamenhof RG (2002) Verification and validation of the NCTPlan treatment planning program. In: Sauerwein W, Moss RL, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, BolognaGoogle Scholar
  55. 55.
    Riley KJ, Binns PJ, Kiger WS III, Harling OK (2002) Clinical dosimetry of the MIT FCB. In: Sauerwein W, Moss RL, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, BolognaGoogle Scholar
  56. 56.
    Kortesniemi M (2002) Solutions for clinical implementation of boron neutron capture therapy in Finland. Ph.D. thesis, Department of Physical Sciences, University of Helsinki, HelsinkiGoogle Scholar
  57. 57.
    Harling OK, Roberts KA, Moulin DJ, Rogus RD (1995) Head phantoms for neutron capture therapy. Med Phys 22:579–583PubMedCrossRefGoogle Scholar
  58. 58.
    Kiger WS III, Lu XQ, Harling OK, Riley KJ, Binns PJ, Kaplan J, Patel H, Zamenhof RG, Shibata Y, Kaplan ID, Busse PM, Palmer MR (2004) Preliminary treatment planning and dosimetry for a clinical trial of neutron capture therapy using a fission converter epithermal neutron beam. Appl Radiat Isot 61:1075–1081PubMedCrossRefGoogle Scholar
  59. 59.
    International Atomic Energy Agency (2004) Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. IAEA Technical Report Series No. 430Google Scholar
  60. 60.
    Riley KJ, Binns PJ, Harling OK, Albritton JR, Kiger WS III, Rezaei A, Skold K, Seppälä T, Savolainen S, Auterinen I, Marek M, Viererbl L, Nievaart VA, Moss RL (2008) An international dosimetry exchange for BNCT part II: computational dosimetry normalizations. Med Phys 35:5419–5425PubMedCrossRefGoogle Scholar
  61. 61.
    Kirby TH, Hanson WF, Gastorf RJ, Chu CH, Shalek RJ (1986) Mailable TLD system for photon and electron therapy beams. Int J Radiat Oncol Biol Phys 12:261–265PubMedCrossRefGoogle Scholar
  62. 62.
    Izewska J, Andreo P (2000) The IAEA/WHO TLD postal programme for radiotherapy hospitals. Radiother Oncol 54:65–72PubMedCrossRefGoogle Scholar
  63. 63.
    Kiger WS III, Albritton JR, Lu XQ, Palmer MR (2004) Development and application of an unconstrained technique for patient positioning in fixed radiation beams. Appl Radiat Isot 61:765–769PubMedCrossRefGoogle Scholar
  64. 64.
    Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, Ido T (1998) Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med 39:325–333PubMedGoogle Scholar
  65. 65.
    Kabalka GW, Smith GT, Dyke JP, Reid WS, Longford CPD, Roberts TG, Reddy NK, Buonocore E, Hubner KF (1997) Evaluation of fluorine-18-BPA-fructose for boron neutron capture treatment planning. J Nucl Med 38:1762–1767PubMedGoogle Scholar
  66. 66.
    Nichols TL, Kabalka GW, Miller LF, Khan MK, Smith GT (2002) Improved treatment planning for boron neutron capture therapy for glioblastoma multiforme using fluorine-18 labeled boronophenylalanine and positron emission tomography. Med Phys 29:2351–2358PubMedCrossRefGoogle Scholar
  67. 67.
    International Commission on Radiation Units and Measurements (1993) Prescribing, recording, and reporting photon beam therapy. ICRU Report 50Google Scholar
  68. 68.
    International Commission on Radiation Units and Measurements (1999) Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50). ICRU Report 62Google Scholar
  69. 69.
    Sakurai Y, Ono K (2007) Improvement of dose distribution by central beam shielding in boron neutron capture therapy. Phys Med Biol 52:7409–7422PubMedCrossRefGoogle Scholar
  70. 70.
    Binns PJ, Riley KJ, Ostrovsky Y, Gao W, Albritton JR, Kiger WS III, Harling OK (2007) Improved dose targeting for a clinical epithermal neutron capture beam using optional 6Li filtration. Int J Radiat Oncol Biol Phys 67:1484–1491PubMedCrossRefGoogle Scholar
  71. 71.
    Nievaart S, Moss R, Sauerwein W, Wittig A (2006) Use of linear programming to obtain an optimum, multi-beam treatment plan in NCT. In: Nakagawa Y, Kobayashi T, Fukuda H (eds) Advances in neutron capture therapy. International Society for Neutron Capture Therapy, TakamatsuGoogle Scholar
  72. 72.
    Joensuu H, Kankaanranta L, Seppälä T, Auterinen I, Kallio M, Kulvik M, Laakso J, Vahatalo J, Kortesniemi M, Kotiluoto P, Seren T, Karila J, Brander A, Jarviluoma E, Ryynanen P, Paetau A, Ruokonen I, Minn H, Tenhunen M, Jaaskelainen J, Farkkila M, Savolainen S (2003) Boron neutron capture therapy of brain tumors: clinical trials at the Finnish facility using boronophenylalanine. J Neurooncol 62:123–134PubMedGoogle Scholar
  73. 73.
    Henriksson R, Capala J, Michanek A, Lindahl SA, Salford LG, Franzen L, Blomquist E, Westlin JE, Bergenheim AT (2008) Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). Radiother Oncol 88:183–191PubMedCrossRefGoogle Scholar
  74. 74.
    Kumada H, Yamamoto K, Torii Y, Matsumura A, Yamamoto T, Nakagawa Y (2000) Development of the patient setting system for BNCT at JRR-4. In: Proceedings of the ninth international symposium on neutron capture therapy for cancer, Osaka, 2000Google Scholar
  75. 75.
    Wielopolski L, Capala J, Pendzick NE, Chanana AD (2000) Patient positioning in static beams for boron neutron capture therapy of malignant glioma. Radiat Med 18:381–387PubMedGoogle Scholar
  76. 76.
    Watkins P, Vroegindeweij C, Garbe S, Hideghety K (2001) Patient positioning at the HFR Petten. In: Hawthorne FM, Shelley K, Wiersema RJ (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  77. 77.
    Chuang CF (1999) Experimental evaluation and mathematical modeling of the pharmacokinetics of boronophenylalanine-fructose (BPA-f) in murine tumor models. Ph.D. thesis, Nuclear Engineering Department, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  78. 78.
    Coderre JA, Chanana AD, Joel DD, Elowitz EH, Micca PL, Nawrocky MM, Chadha M, Gebbers JO, Shady M, Peress NS, Slatkin DN (1998) Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity. Radiat Res 149:163–170PubMedCrossRefGoogle Scholar
  79. 79.
    Kiger WS III, Palmer MR, Riley KJ, Zamenhof RG, Busse PM (2003) Pharmacokinetic modeling for boronophenylalanine-fructose mediated neutron capture therapy: 10B concentration predictions and dosimetric consequences. J Neurooncol 62:171–186PubMedCrossRefGoogle Scholar
  80. 80.
    Chanana AD, Capala J, Chadha M, Coderre JA, Diaz AZ, Elowitz EH, Iwai J, Joel DD, Liu HB, Ma R, Pendzick N, Peress NS, Shady MS, Slatkin DN, Tyson GW, Wielopolski L (1999) Boron neutron capture therapy for glioblastoma multiforme: interim results from the phase I/II dose-escalation studies. Neurosurgery 44:1182–1193PubMedGoogle Scholar
  81. 81.
    Kiger WS III, Palmer MR, Riley KJ, Zamenhof RG, Busse PM (2001) A pharmacokinetic model for the concentration of 10B in blood after boronophenylalanine-fructose administration in humans. Radiat Res 155:611–618PubMedCrossRefGoogle Scholar
  82. 82.
    Shibata Y, Matsumura A, Yamamoto T, Akutsu H, Yasuda S, Nakai K, Nose T, Yamamoto K, Kumada H, Hori N, Ohtake S (2003) Prediction of boron concentrations in blood from patients on boron neutron capture therapy. Anticancer Res 23:5231–5235PubMedGoogle Scholar
  83. 83.
    Kortesniemi M, Seppälä T, Auterinen I, Savolainen S (2004) Enhanced blood boron concentration estimation for BPA-F mediated BNCT. Appl Radiat Isot 61:823–827PubMedCrossRefGoogle Scholar
  84. 84.
    Rassow J, Sauerwein W, Wittig A, Bourhis-Martin E, Hideghety K, Moss R (2004) Advantage and limitations of weighting factors and weighted dose quantities and their units in boron neutron capture therapy. Med Phys 31:1128–1134PubMedCrossRefGoogle Scholar
  85. 85.
    Jones B, Townley J, Dale R, Hopewell J, Green S (2004) The use of biological equivalent dose (BED) concept to assess mixed low and high LET radiations with particular reference to BNCT. In: Coderre JA, Rivard MJ, Patel H, Zamenhof RG (eds) Eleventh world congress on neutron capture therapy. International Society for Neutron Capture Therapy, Waltham, 2004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Radiation OncologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  2. 2.Faculty of Medicine, Proton Medical Research CenterUniversity of TsukubaTsukubaJapan

Personalised recommendations