Advertisement

The Clinical Commissioning of Beams for Neutron Capture Therapy

  • Per Munck af Rosenschöld
Chapter

Abstract

The clinical commissioning of beams for neutron capture therapy involves the measurement and analysis of a large amount of data in various geometries and using various detectors. The process as such is akin to that in the conventional photon and electron radiotherapy field, while the tools, methods and considerations in the field of neutron capture therapy are different. This chapter provides an introduction and a summary of the methods that presently constitute the common practice for the dosimetry of epithermal neutron beams intended for use in neutron capture therapy. Special care is taken in order to allow adherence to conventional radiotherapy terminology and the use of detectors calibrated at standards laboratories.

Keywords

Fast Neutron Ionisation Chamber Neutron Beam Beam Quality Treatment Planning System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahnesjö A, Aspradakis MM (1999) Dose calculations for external photon beams in ­radiotherapy. Phys Med Biol 44(11):99–155CrossRefGoogle Scholar
  2. 2.
    Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, Rogers DWO (1999) AAPM Task Group 51: protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26:1847–1870PubMedCrossRefGoogle Scholar
  3. 3.
    Andreo P, Cunningham J C, Hohlfeld K, Svensson H (1987) Absorbed dose determination in photon and electron beams: an international code of practice. IAEA Technical Report Series No. 277. IAEA, ViennaGoogle Scholar
  4. 4.
    Andreo P, Burns DT, Hohlfeld K, Huq MS, Kanai T, Laitano F, Smyth VG, Vynckier S (2000a) Absorbed dose determination in external beam radiotherapy: an international Code of Practice for dosimetry based on standards of absorbed dose to water. IAEA Technical Report Series No. 398. IAEA, ViennaGoogle Scholar
  5. 5.
    Andreo P, Izewska J, Shortt K and Vynckier S (2000b) Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. IAEA Technical Report Series No. 430. IAEA, ViennaGoogle Scholar
  6. 6.
    Aschan C, Toivonen M, Savolainen S, Seppälä T, Auterinen I (1999) Epithermal neutron beam dosimetry with thermoluminescence dosimeters for boron neutron capture therapy. Radiat Prot Dosim 81(1):47–56CrossRefGoogle Scholar
  7. 7.
    Aschan C, Toivonen M, Savolainen S, Stecher-Rasmussen F (1999) Experimental correction for thermal neutron sensitivity of gamma ray TL dosimeters irradiated a BNCT beams. Radiat Prot Dosim 82:65–69CrossRefGoogle Scholar
  8. 8.
    Auterinen I, Hiismäki P, Kotilouto P, Rosenberg RJ, Salmenhaara S, Seppälä T, Séren T, Tanner V, Aschan C, Kortesniemi M, Kosunen A, Lampinen J, Savolainen S, Toivonen M, Välimäki P (2001) Metamorphosis of a 35 year-old TRIGA reactor into a modern BNCT facility. In: Hawthorne MF, Shelly K, Weirsema RJ (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New York, pp 267–275CrossRefGoogle Scholar
  9. 9.
    Auterinen I, Serén T, Kotiluoto P, Uusi-Simola J, Savolainen S (2004) Quality assurance procedures for the neutron beam monitors at the FiR 1 BNCT facility. Appl Radiat Isot 61(5):1015–1019PubMedCrossRefGoogle Scholar
  10. 10.
    Auterinen I, Serén T, Anttila K, Kosunen A, Savolainen S (2004) Measurement of free beam neutron spectra at eight BNCT facilities worldwide. Appl Radiat Isot 61(5):1021–1026PubMedCrossRefGoogle Scholar
  11. 11.
    Bisceglie E, Colangelo P, Colonna N, Santorelli P, Variale V (2000) On the optimal energy of epithermal neutron beams for BNCT. Phys Med Biol 45:49–58CrossRefGoogle Scholar
  12. 12.
    Brahme A et al (1988) Accuracy requirements and quality assurance of external beam therapy with photons and electrons. Acta Oncol. (Suppl 1)Google Scholar
  13. 13.
    Briesmeister JF (2000) MCNP – a general Monte Carlo N-particle transport code, Version 4C, LA-12625-M, Los Alamos National Laboratory (LANL, NM)Google Scholar
  14. 14.
    Coderre JA, Morris GM (1999) The radiation biology of boron neutron capture therapy. Radiat Res 151:1–18PubMedCrossRefGoogle Scholar
  15. 15.
    d’Errico F, Giusti V, Nava E, Reginatto M, Curzio G, Capala J (2002) Fast neutron spectrometry of BNCT beams. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 1139–1144Google Scholar
  16. 16.
    Giusti V, Munck af Rosenschöld PM, Sköld K, Montagnini B, Capala J (2003) Monte Carlo model of the Studsvik BNCT clinical beam: description and validation. Med Phys 30(12):3107–3117PubMedCrossRefGoogle Scholar
  17. 17.
    Goorley JT, Kiger WS III, Zamenhof RG (2000) Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models. Med Phys 29(22):145–156Google Scholar
  18. 18.
    Hall EJ (1994) Radiobiology for the radiologist, 4th edn. J.B. Lippincott Company, PhiladelphiaGoogle Scholar
  19. 19.
    Harling OK, Roberts RA, Moulin DJ, Rogus RD (1995) Head phantoms for boron neutron capture therapy. Med Phys 22(5):579–583PubMedCrossRefGoogle Scholar
  20. 20.
    Harling OK, Riley KJ, Binns PJ, Kiger WS III, Capala J, Giusti V, Munck af Rosenschöld PM, Sköld K, Auterinen I, Seren T, Kotiluoto P, Uusi-Simola J, Seppälä T, Marek M, Vierbl L, Spurny F, Stecher-Rasmussen F, Voorbrak WP, Morrissey J, Moss RL, Calzetta Larrieu O, Blaumann H, Longhino J (2002) International dosimetry exchange: a status report. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 333–340Google Scholar
  21. 21.
    International Commission on Radiation Units and Measurements (ICRU) (1976) Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. ICRU Report No. 24. ICRU Publications, BethesdaGoogle Scholar
  22. 22.
    International Commission on Radiation Units and Measurements (ICRU) (1977) Neutron dosimetry for medicine and biology. ICRU Report No. 26. ICRU Publications, BethesdaGoogle Scholar
  23. 23.
    International Commission on Radiation Units and Measurements (ICRU) (1989) Clinical neutron dosimetry part I: determination of absorbed dose in a patient treated by external beams of fast neutrons. ICRU Report No. 45. ICRU Publications, BethesdaGoogle Scholar
  24. 24.
    Jansen JTM, Raaijmakers CPJ, Mijnheer BJ, Zeotelief J (1997) Relative neutron sensitivity of tissue-equivalent ionization chambers in an epithermal neutron beam for boron neutron capture therapy. Radiat Prot Dosim 70:27–32CrossRefGoogle Scholar
  25. 25.
    Johnsson SA, Ceberg CP, Knöös T, Nilsson P (2000) On beam quality and stopping power ratios for high-energy x-rays. Phys Med Biol 45(10):2733–2745PubMedCrossRefGoogle Scholar
  26. 26.
    Kashino G, Fukutani S, Suzuki M, Liu Y, Nagata K, Masunaga S, Maruhashi A, Tanaka H, Sakurai Y, Kinashi Y, Fujii N, Ono K (2009) A simple and rapid method for measurement of (10)B-para-boronophenylalanine in the blood for boron neutron capture therapy using fluorescence spectrophotometry. J Radiat Res (Tokyo) 50(4):377–382CrossRefGoogle Scholar
  27. 27.
    Kiger WS III, Sakamoto S, Harling OK (1999) Neutronic design of a fission converter-based neutron beam for neutron capture therapy. Nucl Sci Eng 131:1–22Google Scholar
  28. 28.
    Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T (2009) Task Group 142 report: quality assurance of medical accelerators. American Association of Physicists in Medicine. Med Phys 36(9):4197–4212PubMedCrossRefGoogle Scholar
  29. 29.
    Knoll GF (2000) Radiation detection and measurement. Wiley, New YorkGoogle Scholar
  30. 30.
    Kobayashi T, Kanda K (1983) Microanalysis system of ppm-order 10B concentration in tissue for neutron capture therapy by prompt gamma spectrometry. Nucl Instr Meth 204:525–531CrossRefGoogle Scholar
  31. 31.
    Kobayashi T, Sakurai Y, Ishikawa M (2000) A noninvasive dose estimation system for clinical BNCT based on PG-SPECT – conceptual study and fundamental experiments using HPGe and CdTe semiconductor detectors. Med Phys 27(9):2124–2132PubMedCrossRefGoogle Scholar
  32. 32.
    Koivunoro H, Auterinen I, Kosunen A, Kotiluoto P, Seppälä T, Savolainen S (2003) Computational study of the required dimensions for standard sized phantoms in boron neutron capture therapy dosimetry. Phys Med Biol 48(21):N291–N300PubMedCrossRefGoogle Scholar
  33. 33.
    Komeda M, Kumada H, Ishikawa M, Nakamura T, Yamamoto K, Matsumura A (2009) Performance measurement of the scintillator with optical fiber detector for boron neutron capture therapy. Appl Radiat Isot 67(7–8 Suppl):S254–7PubMedCrossRefGoogle Scholar
  34. 34.
    Kosunen A, Kortesniemi M, Ylä-Mella H, Seppälä T, Lampinen J, Serén T, Auterinen I, Järvinen H, Savolainen S (1999) Twin ionization chambers for dose determinations in phantom in an epithermal neutron beam. Radiat Prot Dosim 81:187–194CrossRefGoogle Scholar
  35. 35.
    Kouloulias VE (2003) Quality assurance in radiotherapy. Eur J Cancer 39(4):415–422PubMedCrossRefGoogle Scholar
  36. 36.
    Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, Palta JR, Purdy JA, Reinstein LE, Svensson GK, Weller M, Wingfield L (1994) Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee task group 40. Med Phys 21(4):581–618PubMedCrossRefGoogle Scholar
  37. 37.
    Laakso J, Kulvik M, Ruokonen I, Vahatalo J, Zilliacus R, Farkkila M, Kallio M (2001) Atomic emission method for total boron in blood during neutron-capture therapy. Clin Chem 47(10):1796–1803PubMedGoogle Scholar
  38. 38.
    Linko S, Revitzer H, Zilliacus R, Kortesniemi M, Kouri M, Savolainen S (2008) Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy. Scand J Clin Lab Invest 68(8):696–702PubMedCrossRefGoogle Scholar
  39. 39.
    Liu HB, Greenberg DD, Capala J, Wheeler FJ (1996) An improved neutron collimator for brain tumor irradiations in clinical boron neutron capture therapy. Med Phys 23:2051–2060PubMedCrossRefGoogle Scholar
  40. 40.
    Marek M, Viererbl L, Burian J, Jansky B (2001) Determination of the geometric and spectral characteristics of BNCT beam (neutron and gamma-ray). In: Hawthorne MF, Shelly K, Weirsema RJ (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New York, pp 381–399CrossRefGoogle Scholar
  41. 41.
    Mijnheer BJ, Battermann JJ, Wambersie A (1987) What degree of accuracy is required and can be achieved in photon and neutron therapy? Radiother Oncol 8:237–252PubMedCrossRefGoogle Scholar
  42. 42.
    Moro D, Colautti P, Lollo M, Esposito J, Conte V, De Nardo L, Ferretti A, Ceballos C (2009) BNCT dosimetry performed with a mini twin tissue-equivalent proportional counters (TEPC). Appl Radiat Isot 67(7–8 Suppl):S171–S174PubMedCrossRefGoogle Scholar
  43. 43.
    Morris GM, Coderre JA, Hopewell JW, Micca PL, Rezvani M (1994) Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium. Radiother Oncol 32(2):144–153PubMedCrossRefGoogle Scholar
  44. 44.
    Morris GM, Coderre JA, Bywaters A, Whitehouse E, Hopewell JW (1996) Boron neutron capture therapy irradiation of the rat spinal cord: histopathological evidence of a vascular-mediated pathogenesis. Radiat Res 146:313–320PubMedCrossRefGoogle Scholar
  45. 45.
    Morris GM, Micca PL, Nawrocky MM, Weissfloch LE, Coderre JA (2002) Long-term infusions of p-boronophenylalanine for boron neutron capture therapy: evaluation using rat brain tumor and spinal cord models. Radiat Res 158(6):743–752PubMedCrossRefGoogle Scholar
  46. 46.
    Moss RL, Aizawa O, Beynon D, Brugger R, Constantine G, Harling O, Liu HB, Watkins P (1997) The requirements and development of neutron beams for neutron capture therapy of brain cancer. J Neurooncol 33(1–2):27–40PubMedCrossRefGoogle Scholar
  47. 47.
    Mukai K, Nakagawa Y, Matsumoto K (1995) Prompt gamma ray spectrometry for in vivo measurement of boron-10 concentration in rabbit brain tissue. Neurol Med Chir (Tokyo) 35(12):855–860CrossRefGoogle Scholar
  48. 48.
    Munck af Rosenschöld PM, Verbakel WF, Ceberg CP, Stecher-Rasmussen F, Persson BRR (2001) Toward clinical application of prompt gamma spectroscopy for in-vivo monitoring of boron uptake in boron neutron capture therapy. Med Phys 28(5):787–795PubMedCrossRefGoogle Scholar
  49. 49.
    Munck af Rosenschöld P, Ceberg CP, Giusti V, Andreo P (2002) Photon quality correction factors for ionization chambers in an epithermal neutron beam. Phys Med Biol 47(14):2397–2409PubMedCrossRefGoogle Scholar
  50. 50.
    Munck af Rosenschöld P, Giusti V, Ceberg CP, Capala J, Sköld K, Persson BR (2003) Reference dosimetry at the neutron capture therapy facility at Studsvik. Med Phys 30(7):1569–1579PubMedCrossRefGoogle Scholar
  51. 51.
    Munck af Rosenschöld P, Capala J, Ceberg CP, Giusti V, Salford LG, Persson BR (2004) Quality assurance of patient dosimetry in boron neutron capture therapy. Acta Oncol 43(4):404–411PubMedCrossRefGoogle Scholar
  52. 52.
    Nigg DW (2003) Computational dosimetry and treatment planning considerations for neutron capture therapy. J Neurooncol 62:75–86PubMedGoogle Scholar
  53. 53.
    Nigg DW, Wheeler FJ, Wessol DE, Capala J, Chadha M (1997) Computational dosimetry and treatment planning for boron neutron capture therapy. J Neurooncol 33:93–104PubMedCrossRefGoogle Scholar
  54. 54.
    Raaijmakers CPJ, Konijnenberg MW, Verhagen VH, Mijnheer BJ (1995) Determination of dose components in an epithermal neutron beam for boron neutron capture therapy. Med Phys 22:321–329PubMedCrossRefGoogle Scholar
  55. 55.
    Raaijmakers CPJ, Kronijenberg MW, Dewit L, Haritz D, Huiskamp R, Philipp K, Siefert A, Stecher-Rasmussen F, Mijnheer BJ (1995) Monitoring of blood-10B concentration for boron neutron capture therapy using prompt gamma-ray analysis. Acta Oncol 34:517–523PubMedCrossRefGoogle Scholar
  56. 56.
    Raaijmakers CP, Nottelman EL, Konijnenberg MW, Mijnheer BJ (1996) Dose monitoring for boron neutron capture therapy using a reactor-based epithermal neutron beam. Phys Med Biol 41(12):2789–2797PubMedCrossRefGoogle Scholar
  57. 57.
    Raaijmakers CP, Konijnenberg MW, Mijnheer BJ (1997) Clinical dosimetry of an epithermal neutron beam for neutron capture therapy: dose distributions under reference conditions. Int J Radiat Oncol Biol Phys 37(4):941–951PubMedCrossRefGoogle Scholar
  58. 58.
    Raaijmakers CP, Bruinvis IA, Nottelman EL, Mijnheer BJ (1998) A fast and accurate treatment planning method for boron neutron capture therapy. Radiother Oncol 46(3):321–332PubMedCrossRefGoogle Scholar
  59. 59.
    Raaijmakers CPJ, Nottelman EL, Mijnheer BJ (2000) Phantom materials for boron neutron capture therapy. Phys Med Biol 45(8):2353–2361PubMedCrossRefGoogle Scholar
  60. 60.
    Rassow J, Stecher-Rasmussen F, Voorbraak W, Moss R, Vroegindeweij C, Hideghéty K, Sauerwien W (2001) Comparison of quality assurance for performance and safety characteristics for boron neutron capture therapy in Petten/NL with medical electron accelerators. Radiat Oncol 59:99–108CrossRefGoogle Scholar
  61. 61.
    Riley KJ, Binns PJ, Greenberg DD, Harling OK (2002) A physical dosimetry intercomparison for BNCT. Med Phys 29(5):898–904PubMedCrossRefGoogle Scholar
  62. 62.
    Riley KJ, Binns PJ, Harling OK (2003) Performance characteristics of the MIT fission converter based epithermal neutron beam. Phys Med Biol 48(7):943–958PubMedCrossRefGoogle Scholar
  63. 63.
    Rogus RD, Harling OK, Yanch JC (1994) Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor. Med Phys 21:1611–1625PubMedCrossRefGoogle Scholar
  64. 64.
    Ryynänen PM, Kortesniemi M, Coderre JA, Diaz AZ, Hiismäki P, Savolainen S (2000) Models for estimation of the (10)B concentration of BPA-fructose complex infusion in patients during epithermal neutron irradiation in BNCT. Int J Radiat Oncol Biol Phys 48:1145–1154PubMedCrossRefGoogle Scholar
  65. 65.
    Seppälä T, Vähätalo V, Auterinen I, Kosunen A, Nigg DW, Wheeler FJ, Savolainen S (1999) Modelling of brain tissue substitutes for phantom materials in neutron capture therapy (NCT) dosimetry. Radiat Phys Chem 55:239–246CrossRefGoogle Scholar
  66. 66.
    Seppälä T, Auterinen I, Aschan C, Serén T, Benczik J, Snellman M, Huiskamp R, Ramadan UA, Kankaranta L, Joensuu H, Savolainen S (2002) In-vivo dosimetry of the dog irradiations at the Finnish BNCT facility. Med Phys 29(11):2629–2640PubMedCrossRefGoogle Scholar
  67. 67.
    Spevacek V, Marek M, Dvorak P, Novotny ml J, Viererbl L, Flibor S (2002) Application of gel dosimeter in three-dimensional dosimetry for boron neutron capture therapy. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 359–365Google Scholar
  68. 68.
    Svantesson E, Capala J, Markides KE, Pettersson J (2002) Determination of boron-containing compounds in urine and blood plasma from boron neutron capture therapy patients. The importance of using coupled techniques. Anal Chem 74(20):5358–5363PubMedCrossRefGoogle Scholar
  69. 69.
    Uusi-Simola J, Heikkinen S, Kotiluoto P, Serén T, Seppälä T, Auterinen I, Savolainen S (2007) MAGIC polymer gel for dosimetric verification in boron neutron capture therapy. J Appl Clin Med Phys 8(2):114–123PubMedGoogle Scholar
  70. 70.
    Verbakel WFAR (2001) Validation of the scanning -gamma-ray telescope for in vivo dosimetry and boron measurements during BNCT. Phys Med Biol 46(12):3269–3285PubMedCrossRefGoogle Scholar
  71. 71.
    Voorbraak WP, Järvinen H, Auterinen I, Gonçalves IC, Green S, Kosunen A, Marek M, Mijnheer BJ, Moss RL, Rassow J, Sauerwein W, Savolainen S, Serén T, Stecher Rasmussen F, Uusi-Simola J, Zsolnay EM (2003) Recommendations for the dosimetry of boron neutron capture therapy (BNCT). The JRC, Petten, the Netherlands, 2003Google Scholar
  72. 72.
    Wittig A, Moss RL, Stecher-Rasmussen F, Appelman K, Rassow J, Roca A, Sauerwein W (2005) Neutron activation of patients following boron neutron capture therapy of brain tumors at the high flux reactor (HFR) Petten (EORTC Trials 11961 and 11011). Strahlenther Onkol 181(12):774–782PubMedCrossRefGoogle Scholar
  73. 73.
    Wojnecki C, Green S (2001) A computational study into the use of polyacrylamide gel and A-150 plastic as brain tissue substitutes for boron neutron capture therapy. Phys Med Biol 46(5):1399–1405PubMedCrossRefGoogle Scholar
  74. 74.
    Zamenhof RG, Murray BW, Brownell GL, Wellum GR, Tolpin EI (1975) Boron neutron capture therapy for the treatment of cerebral gliomas: I. Theoretical evaluation of the efficacy of various neutron beams. Med Phys 2:47–60PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Radiation Oncology – 3994Radiation Medicine Research CenterCopenhagenDenmark
  2. 2.Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
  3. 3.Department of Medical PhysicsMemorial Sloan-Kettering Cancer Center 10021New YorkUSA

Personalised recommendations