Physical Dosimetry and Spectral Characterization of Neutron Sources for Neutron Capture Therapy

  • David W. Nigg


Neutron beams useful for BNCT applications must be carefully characterized with regard to their free-field spectrum and intensity as well as with regard to the various dose components that are induced in tissue volumes under irradiation. The macroscopic physical characterization of a given beam is accomplished computationally by way of sophisticated neutron and photon transport analysis, validated by suitable experimental measurements. Such measurements are carried out by a variety of techniques. Neutron activation spectrometry may be viewed as the most accurate and reproducible approach for the measurement of the free-field neutron spectrum as well as for flux measurements in phantoms exposed to the beam of interest. This technique is based on the fact that different elements and different isotopes of the same element generally have different, more or less linearly independent, neutron activation responses as functions of incident neutron energy. In the case of free-field spectral measurements, a set of activation responses for 8–12 different materials having well-known activation cross sections as functions of energy is typically used in conjunction with a process for unfolding a neutron spectrum that is a best estimate (usually in a least-squares sense) of the true neutron spectrum that produced the observed set of activation responses. Activation techniques can also be used for spectral measurements of the neutron beam as it is modified by passage through phantom materials or tissue. The results can then be converted to absorbed physical dose via application of appropriate conversion factors for each neutron-induced dose component. Separate measurement of the incident and induced photon dose components that are inevitably present in the irradiation volume in BNCT may be accomplished by the use of paired ion-chamber technique, whereby one chamber is more sensitive to neutrons, while the other is more sensitive to photons. This also produces a background neutron-induced dose measurement that complements what can be obtained by activation spectrometry. Thermoluminescent dosimeters may also be used in a similar manner to separate the photon and neutron components of the background neutron dose. In addition to these basic approaches, several other types of radiation measurement instruments and techniques can be applied to provide additional dosimetric information. These include fission chambers, self-powered neutron detectors, and BF3 and 3He detectors for beam intensity monitoring, as well as proton-recoil chambers, solid organic crystal and plastic scintillators, and superheated nucleation detectors to provide additional spectral information. Finally, applications of Fricke dosimetry in tissue-equivalent gels have been explored as a possible means of two- and three-dimensional dosimetry in BNCT.


Neutron Flux Thermal Neutron Neutron Beam Neutron Capture Neutron Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Preparation of this article was supported in part via a faculty-staff exchange grant administered by the Idaho National Engineering Laboratory under Battelle Energy Alliance, LLC contract no. DE-AC07-05ID14517 with the US Department of Energy. The author would also like to acknowledge Mr. Stuart Slattery, University of Wisconsin, for his assistance in compilation of the extensive bibliography that is presented here.


  1. 1.
    Alburger DE, Raparia D, Zucher MS (1999) Phantoms with 10 BF3 detectors for boron neutron capture therapy applications. Med Phys 25:1735–1738CrossRefGoogle Scholar
  2. 2.
    Apfel RE, Lo Y-C (1979) Practical neutron dosimetry with superheated drops. Health Phys 56:79–83CrossRefGoogle Scholar
  3. 3.
    Aschan C, Toivonen M, Savolainen S, Seppälä T, Auterinen I (1999) Epithermal neutron beam Dosimetry with thermoluminescence dosimeters for boron neutron capture therapy. Radiat Prot Dosimetry 81:47–56CrossRefGoogle Scholar
  4. 4.
    Aschan C, Toivonen M, Savolainen S, Stecher-Rasmussen F (1999) Experimental correction for thermal neutron sensitivity of gamma ray TL dosimeters irradiated at BNCT beams. Radiat Prot Dosimetry 82:65–69CrossRefGoogle Scholar
  5. 5.
    Aschan C, Lampinen JS, Savolainen S, Toivonen M (1999) Monte Carlo simulation of the influence of adjacent TL dosimeters on TL readings in simultaneous measurements in BNCT beams. Radiat Prot Dosimetry 85:349–352CrossRefGoogle Scholar
  6. 6.
    Attix FH (1986) Introduction to radiological physics and radiation dosimetry. Wiley, New YorkCrossRefGoogle Scholar
  7. 7.
    Auterinen I, Serén T, Uusi-Simola J, Kosunen A, Savolainen S (2004) A toolkit for epithermal neutron beam characterization in BNCT. Radiat Prot Dosimetry 110:587–593PubMedCrossRefGoogle Scholar
  8. 8.
    Becker J, Brunckhorst E, Roca A, Stecher-Rasmussen F, Moss R, Böttger R, Schmidt R (2007) Setup and calibration of a triple ionization chamber system for dosimetry in mixed neutron/photon fields. Phys Med Biol 52:3715–3727PubMedCrossRefGoogle Scholar
  9. 9.
    Bilski P, Budzanowski M, Ochab E, Olko P, Czopyk L (2004) Dosimetry of BNCT beams with novel thermoluminescent detectors. Radiat Prot Dosimetry 110:623–626PubMedCrossRefGoogle Scholar
  10. 10.
    Binns PJ, Riley KJ, Harling OK, Kiger WS III, Munck af Rosenschöld PM, Giusti V, Capala J, Sköld K, Auterinen I, Serén T, Kotiluoto P, Uusi-Simola J, Marek M, Viererbl L, Spurny F (2005a) An international dosimetry exchange for boron neutron capture therapy, part 1: absorbed dose measurements. Med Phys 32:3729–3736PubMedCrossRefGoogle Scholar
  11. 11.
    Binns PJ, Riley KJ, Harling OK (2005b) Epithermal neutron beams for clinical studies of boron neutron capture therapy: a dosimetric comparison of seven beams. Radiat Res 64:212–220CrossRefGoogle Scholar
  12. 12.
    Blaumann HR, Gonzalez SJ, Longhino J, Santa Cruz GA, Calzetta Larrieu OA, Bonomi MR, Roth BMC (2004) Boron neutron capture therapy of skin melanomas at the RA-6 reactor: a procedural approach to beam setup and performance evaluation for upcoming clinical trials. Med Phys 31:70–80PubMedCrossRefGoogle Scholar
  13. 13.
    Bliss M, Craig RA, Sunberg DS, Harker YD, Hartwell JK, Venhuizen JR (1997) Progress towards development of real-time dosimetry for BNCT. In: Larsson B, Crawford J, Weinrich R (eds) Advances in neutron capture therapy, vol I, Medicine and physics. Elsevier Science BV, AmsterdamGoogle Scholar
  14. 14.
    Breismeister JF (1993) MCNP – a general Monte Carlo N-particle transport code, Version 4A, LA-12625-M. Los Alamos National Laboratory, Los AlamosGoogle Scholar
  15. 15.
    Brockman J, Nigg DW, Hawthorne MF, McKibben C (2009) Spectral performance of a composite single-crystal filtered thermal neutron beam for BNCT research at the University of Missouri. Appl Radiat Isot 67:S222–S225PubMedCrossRefGoogle Scholar
  16. 16.
    Burn KW, Colli V, Curzio G, d’Errico F, Gambarini G, Rosi G, Scolari L (2004) Characterization of the tapiro BNCT epithermal facility. Radiat Prot Dosimetry 110:645–649PubMedCrossRefGoogle Scholar
  17. 17.
    Coderre JA, Morris GM (1999) The radiation biology of boron neutron capture therapy. Radiat Res 151:1–18PubMedCrossRefGoogle Scholar
  18. 18.
    Crawford JF, Teichmann S, Stecher-Rasmussen F (1996) A direct comparison of neutron energy spectra at high and low powers in the HB11 beam at HFR Petten. In: Mishima Y (ed) Cancer neutron capture therapy. Plenum Press, New YorkGoogle Scholar
  19. 19.
    Croft S, Perks CA (1990) Corrections to gamma ray dosimetry measurements made in Harwell’s two high-intensity filters neutron beams using 7LiF thermoluminescent dosimeters owing to their neutron sensitivity. Radiat Prot Dosimetry 33:351–354Google Scholar
  20. 20.
    Draper EL Jr (1971) Integral reaction rate determinations – part I: tailored reactor spectrum preparation and measurement. Nucl Sci Eng 48:22–30Google Scholar
  21. 21.
    Gadan M, Crawley V, Thorp S, Miller M (2009) Preliminary liver dose estimation in the new facility for biomedical applications at the RA-3 reactor. Appl Radiat Isot 67:5206–5209CrossRefGoogle Scholar
  22. 22.
    Gambarini G, Birattari C, Colombi C, Pirola L, Rosi G (2002) Fricke gel dosimetry in boron neutron capture therapy. Radiat Prot Dosimetry 101:419–422PubMedCrossRefGoogle Scholar
  23. 23.
    Gambarini G, Colli V, Gay S, Petrovich C, Pirola L, Rosi G (2004) In-phantom imaging of all dose components in boron neutron capture therapy by means of gel dosimeters. Appl Radiat Isot 61:759–763PubMedCrossRefGoogle Scholar
  24. 24.
    Gambarini G, Daquino GG, Moss RL, Carrara M, Nievaart VA, Vanossi E (2007) Gel dosimetry in the BNCT facility for extra-corporeal treatment of liver cancer at the HFR Petten. Radiat Prot Dosimetry 126:604–609PubMedCrossRefGoogle Scholar
  25. 25.
    Harasawa S, Nakamoto A, Hayakawa Y, Egawa J, Aizawa O, Nozaki T, Minobe T, Hatanaka H (1981) Improved monitoring system of neutron flux during boron neutron capture therapy. Radiat Res 88:187–193PubMedCrossRefGoogle Scholar
  26. 26.
    Harker YD, Anderl RA, Becker GK, Miller LG (1992) Spectral characterization of the epithermal neutron beam at the Brookhaven medical research reactor. Nucl Sci Eng 110:355–368Google Scholar
  27. 27.
    Hayakawa Y, Harasawa S, Nakamoto A, Amano K, Hatanaka H, Egawa J (1978) Simultaneous monitoring system of thermal neutron flux for boron neutron capture therapy. Radiat Res 75:243–251PubMedCrossRefGoogle Scholar
  28. 28.
    ICRU Report 26 (1977) Neutron dosimetry for biology and medicine. International Commission on Radiation Units and Measurement, BethesdaGoogle Scholar
  29. 29.
    ICRU Report 45 (1989) Clinical neutron dosimetry part 1: determination of absorbed dose in a patient treated by external beams of fast neutrons. International Commission on Radiation Units and Measurement, BethesdaGoogle Scholar
  30. 30.
    Ishikawa M, Ono K, Sakurai Y, Unesaki H, Uritani A, Bengua G, Kobayashi T, Tanaka K, Kosako T (2004) Development of real-time thermal neutron monitor using boron-loaded plastic scintillator with optical fiber for boron neutron capture therapy. Appl Radiat Isot 61:775–779PubMedCrossRefGoogle Scholar
  31. 31.
    Järvinen H, Voorbraak WP (2003) Recommendations for the dosimetry of boron neutron capture therapy, Report 21425/03 55339/C, NRG PettenGoogle Scholar
  32. 32.
    Kessler C, Stecher-Rasmussen F, Rassow J, Garbe S, Sauerwein W (2001) Application of thermoluminescent dosimeters to mixed neutron-gamma dosimetry for BNCT. In: Hawthorne MF et al (eds) Frontiers in neutron capture therapy, vol 2. Kluwer Academic/Plenum Publishers, New York, pp 1165–1173CrossRefGoogle Scholar
  33. 33.
    Knoll GF (2000) Radiation detection and measurement, 3rd edn. Wiley, New YorkGoogle Scholar
  34. 34.
    Konijnenberg MW, Raaijmakers CPJ, Dewitt L, Mijnheer BJ, Moss RL, Stecher-Rasmussen F, Watkins PRD (1992) Treatment planning of boron neutron capture therapy: measurements and calculations. Radiat Prot Dosimetry 44:443–446Google Scholar
  35. 35.
    Kosunen A, Kortesniemi M, Ylä-Mella H, Seppälä T, Lampinen J, Serén T, Auterinen I (1999) Twin ionization chambers for dose determinations in phantom in an epithermal neutron beam. Radiat Prot Dosimetry 81:187–194CrossRefGoogle Scholar
  36. 36.
    Litovchenko PG, Moss R, Stecher-Rasmussen F, Appelman K, Barabash LI, Kibkalo TI, Lastovetsky VF, Litovchenko AP, Pinkovska MB (1999) Semiconductor sensors for dosimetry of epithermal neutrons, semiconductor physics. Quantum Opt Optoelectronics 2:90–91Google Scholar
  37. 37.
    Marek M, Viererbl L, Burian J, Jansky B (2001) Determination of the geometric and spectral characteristics of BNCT beam (neutron and gamma ray). In: Hawthorne F, Shelly K, Wiersema R (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  38. 38.
    McElroy WN, Berg S (1967) SAND-II neutron flux spectra determination by multiple foil activation iterative method. AWRL-TR-67-41, vol 1–4Google Scholar
  39. 39.
    Miller M, Mariani LE, Sztejnberg Gonçalves-Carralves ML, Skumanic M, Thorp S (2004) Implantable self-powered detector for online determination of neutron flux in patients during NCT treatment. Appl Radiat Isot 61:1033–1037PubMedCrossRefGoogle Scholar
  40. 40.
    Moss RL, Stecher-Rasmussen F, Rassow J, Morrissey J, Voorbraak W, Verbakel W, Appelman K, Daquino GG, Muzi L, Wittig A, Bourhis-Martin E, Sauerwein W (2004) Procedural and practical applications of radiation measurements for BNCT at HFR Petten. Nucl Instrum Methods Phys Res B 213:633–636CrossRefGoogle Scholar
  41. 41.
    Munck af Rosenschöld PM, Giusti V, Ceberg CP, Capala J, Sköld K, Persson BRR (2003) Reference dosimetry at the neutron capture therapy facility at Studsvik. Med Phys 30:1569–1579PubMedCrossRefGoogle Scholar
  42. 42.
    Nath R, Meigooni C, King C, Smolen S, d’Errico F (1993) Superheated drop detector for determination of neutron dose equivalent to patients undergoing high-energy X-ray and electron radiotherapy. Med Phys 20:78Google Scholar
  43. 43.
    Nigg DW, Wemple CA, Risler R, Hartwell JK, Harker YD, Laramore GE (2000) Modification of the University of Washington neutron radiography facility for optimization of neutron capture enhanced fast-neutron therapy. Med Phys 27:359–367PubMedCrossRefGoogle Scholar
  44. 44.
    Nigg DW, Venhuizen JR, Wemple CA, Tripard GE, Sharp S, Fox K (2004) Flux and instrumentation upgrade for the epithermal neutron beam facility at Washington State University. Appl Radiat Isot 61:993–998PubMedCrossRefGoogle Scholar
  45. 45.
    Perks CA, Gibson AB (1992) Neutron spectrometry and dosimetry for boron neutron capture therapy. Radiat Prot Dosimetry 44:425–428Google Scholar
  46. 46.
    Pozzi E, Nigg DW, Miller M, Thorp SI, Heber EM, Zarza L, Estryk G, Monti Hughes A, Molinari AJ, Garabalino M, Itoiz ME, Aromando RF, Quintana J, Trivillin VA, Schwint AE (2009) Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer. Appl Radiat Isot 67:S309–S312PubMedCrossRefGoogle Scholar
  47. 47.
    Raaijmakers CPJ, Konijnenberg MW, Verhagen HW, Mijnheer BJ (1995) Determination of dose components in phantoms irradiated with an epithermal neutron beam for boron neutron capture therapy. Med Phys 22:321–329PubMedCrossRefGoogle Scholar
  48. 48.
    Raaijmakers CPJ, Watkins PRD, Nottelman EL, Verhagen HW, Jansen JTM, Zoetelief J J, Mijnheer BJ (1996) The neutron sensitivity of dosimeters applied to boron neutron capture therapy. Med Phys 23:1581–1589PubMedCrossRefGoogle Scholar
  49. 49.
    Rhoades WA, Childs RL (1988) The DORT two-dimensional discrete-ordinates transport code. Nucl Sci Eng 99:88–89Google Scholar
  50. 50.
    Riley KJ, Binns PJ, Harling OK, Kiger WS III, Gonzalez SJ, Casal M, Longhino J, Calzetta Larrieu OA, Blaumann HR (2008) Unifying dose specification between clinical BNCT centers in the Americas. Med Phys 35:1295–1298PubMedCrossRefGoogle Scholar
  51. 51.
    Riley KJ, Binns PJ, Harling OK, Albritton JR, Kiger WS III, Rezaei A, Sköld K, Seppälä T, Savolainen S, Auterinen I, Marek M, Viererbl L, Nievaart VA, Moss RL (2008) An international dosimetry exchange for BNCT part II: computational dosimetry normalizations. Med Phys 35:5419–5425PubMedCrossRefGoogle Scholar
  52. 52.
    Roca A, Nievaart VA, Moss RL, Stecher-Rasmussen F, Zamfir NV (2007) Validating a MCNPX model of Mg(Ar) and TE(TE) ionization chambers exposed to 60Co gamma rays. Radiat Prot Dosimetry 129:365–371PubMedCrossRefGoogle Scholar
  53. 53.
    Rogus RD, Harling OK, Yanch JC (1994) Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor. Med Phys 21:1611–1625PubMedCrossRefGoogle Scholar
  54. 54.
    Roussin RW (1980) BUGLE-80 coupled 47-neutron, 20 gamma-ray P3 cross section library, DLC-75. Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  55. 55.
    Santa Cruz GA, Zamenhof RG (2004) The microdosimetry of the 10B reaction in boron neutron capture therapy: a new generalized theory. Radiat Res 162:702–710PubMedCrossRefGoogle Scholar
  56. 56.
    Seppälä T, Auterinen I, Aschan C, Serén T, Bevcizik J, Snellmn M, Huiskamp R, Abo Ramadan U, Kankaanranta L, Joensuu H, Savolainen S (2002) Dose planning with comparison to in-vivo dosimetry for epithermal neutron irradiation of the dog brain. Med Phys 29:2629–2640PubMedCrossRefGoogle Scholar
  57. 57.
    Stallman FW (1986) LSL-M2: a computer program for least squares logarithmic adjustment of neutron spectra, NUREG/CR-4349, ORNL/TM-9933. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  58. 58.
    Tattam DA, Allen DA, Beynon TD, Constantine G, Green S, Scott MC, Weaver DR (1998) In-phantom neutron fluence measurements in the orthogonal Birmingham boron neutron capture therapy beam. Med Phys 25:1964–1966PubMedCrossRefGoogle Scholar
  59. 59.
    Toivonen M, Chernov V, Jungner H, Auterinen I, Toivonen A (1999) Response characteristics of LiF:Mg, Cu, P TL detectors in boron neutron capture therapy dosimetry. Radiat Prot Dosimetry 85:373–375CrossRefGoogle Scholar
  60. 60.
    Van Vliet-Vroegendeweij C, Wheeler F, Stecher-Rasmussen F, Moss R, Huiskamp R (2001) Microdosimetry model for boron neutron capture therapy: I. Determination of microscopic quantities of heavy particles on a cellular scale. Radiat Res 155:490–497CrossRefGoogle Scholar
  61. 61.
    Van Vliet-Vroegendeweij C, Wheeler F, Stecher-Rasmussen F, Huiskamp R (2001) Microdosimetry model for boron neutron capture therapy: II. Theoretical estimation of the effectiveness function and surviving fractions. Radiat Res 155:498–502CrossRefGoogle Scholar
  62. 62.
    Verbakel WFAR (2001) Validation of the scanning γ-ray telescope for in-vivo dosimetry and boron measurements during BNCT. Phys Med Biol 46:1–17CrossRefGoogle Scholar
  63. 63.
    Wheeler FJ, Parsons DK, Rushton BL, Nigg DW (1990) Epithermal neutron beam design for neutron capture therapy at the PBF and BMRR reactor facilities. Nucl Technol 92:106–118Google Scholar
  64. 64.
    Yamamoto T, Matsumura A, Yamamoto K, Kumada H, Hori N, Torii Y, Shibata Y, Nose T (2003) Characterization of neutron beams for boron neutron capture therapy: in-air radiobiological dosimetry. Radiat Res 160:70–76PubMedCrossRefGoogle Scholar
  65. 65.
    Zamenhof RG (1997) Microdosimetry for neutron capture therapy: a review. J Neurooncol 33:81–92PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Nuclear Science and Engineering DivisionIdaho National LaboratoryIdaho FallsUSA

Personalised recommendations