Boron Imaging: Localized Quantitative Detection and Imaging of Boron by Magnetic Resonance

  • Peter Bendel


This chapter provides the background for understanding the current status of progress towards establishing nuclear magnetic resonance (NMR), applied as magnetic resonance imaging (MRI) and localized spectroscopy or spectroscopic imaging (MRS, MRSI), as a viable method for the noninvasive, in vivo imaging of compounds used in BNCT. The underlying physical principles are presented, and the progress is reviewed, covering not only the direct detection of Boron (10B or 11B), but also other nuclear species in the BNCT agents that are amenable for NMR detection.


Nuclear Magnetic Resonance Receiver Coil Boron Isotope Magnetic Resonance Imaging Experiment Chemical Shift Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bendel P (2005) Biomedical applications of 10B and 11B NMR. NMR Biomed 18:74–82PubMedCrossRefGoogle Scholar
  2. 2.
    Bendel P, Sauerwein W (2001) Optimal detection of the neutron capture therapy agent borocaptate sodium (BSH): a comparison between 1H and 10B NMR. Med Phys 28:178–183PubMedCrossRefGoogle Scholar
  3. 3.
    Bendel P, Zilberstein J, Salomon Y (1994) In vivo detection of a boron neutron capture therapy agent in melanoma by proton observed 1H-10B double resonance. Magn Reson Med 32:170–174PubMedCrossRefGoogle Scholar
  4. 4.
    Bendel P, Zilberstein J, Salomon Y, Frantz A, Reddy NK, Kabalka GW (1997) Quantitative in vivo NMR detection of BSH and 19F-BPA in a mouse melanoma model. In: Larsson B, Crawford J, Weinreich R (eds) Advances in neutron capture therapy, vol II, Chemistry and biology. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Bendel P, Frantz A, Zilberstein J, Kabalka GW, Salomon Y (1998) Boron-11 NMR of borocaptate: relaxation and in vivo detection in melanoma-bearing mice. Magn Reson Med 39:439–447PubMedCrossRefGoogle Scholar
  6. 6.
    Bendel P, Koudinova N, Salomon Y (2001) In vivo imaging of the neutron capture therapy agent BSH in mice using 10B MRI. Magn Reson Med 46:13–17PubMedCrossRefGoogle Scholar
  7. 7.
    Bendel P, Koudinova N, Salomon Y, Hideghéty K, Sauerwein W (2002) Imaging of BSH by 10B MRI. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi, BolognaGoogle Scholar
  8. 8.
    Bendel P, Margalit R, Koudinova N, Salomon Y (2005) Noninvasive quantitative in vivo mapping and metabolism of boronophenylalanine (BPA) by nuclear magnetic resonance (NMR) spectroscopy and imaging. Rad Res 164:680–687CrossRefGoogle Scholar
  9. 9.
    Bendel P, Margalit R, Salomon Y (2005) Optimized 1H MRS and MRSI methods for the in vivo detection of boronophenylalanine. Magn Reson Med 53:1166–1171PubMedCrossRefGoogle Scholar
  10. 10.
    Bradshaw KM, Schweizer MP, Glover GH, Hadley JR, Tippets R, Tang PP, Davis WL, Heilbrun MP, Johnson S, Ghanem T (1995) BSH distributions in the canine head and a human patient using 11B MRI. Magn Reson Med 34:48–56PubMedCrossRefGoogle Scholar
  11. 11.
    Callaghan PT (1993) Principles of nuclear magnetic resonance microscopy. Clarendon, OxfordGoogle Scholar
  12. 12.
    Capuani S, Porcari P, Fasano F, Campanella R, Maraviglia B (2008) 10B-editing 1H-detection and 19F MRI strategies to optimize boron neutron capture therapy. Mag Res Imag 26:987–993CrossRefGoogle Scholar
  13. 13.
    De Luca F, Campanella R, Bifone A, Maraviglia B (1991) Boron-10 double resonance spatial NMR detection. Chem Phys Lett 186:303–306CrossRefGoogle Scholar
  14. 14.
    Hofmann B, Fischer CO, Lawaczeck R, Platzek J, Semmler W (1999) Gadolinium neutron capture therapy (GdNCT) of melanoma cells and solid tumors with the magnetic resonance imaging contrast agent Gadobutrol. Invest Radiol 34:126–133PubMedCrossRefGoogle Scholar
  15. 15.
    Hoult DI, Lauterbur PC (1979) The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34:425–433Google Scholar
  16. 16.
    Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85Google Scholar
  17. 17.
    Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, Ido T (1998) Fluorine-18 labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med 39:325–333PubMedGoogle Scholar
  18. 18.
    Kabalka GW, Davis M, Bendel P (1988) Boron-11 MRI and MRS of intact animals infused with a boron neutron capture therapy agent. Magn Reson Med 8:231–237PubMedCrossRefGoogle Scholar
  19. 19.
    Nakamura H, Fukuda H, Girald F, Kobayashi T, Hiratsuka J, Akaizawa T, Nemoto H, Cai J, Yoshida K, Yamamoto Y (2000) In vivo evaluation of carborane gadolinium-DPTA complex as an MR imaging boron carrier. Chem Pharm Bull 48:1034–1038PubMedCrossRefGoogle Scholar
  20. 20.
    Nichols TL, Kabalka GW, Miller LF, Khan MK, Smith GT (2002) Improved treatment planning for boron neutron capture therapy for glioblastoma multiforme using fluorine-18 labeled boronophenylalanine and positron emission tomography. Med Phys 29:2351–2358PubMedCrossRefGoogle Scholar
  21. 21.
    Panov V, Salomon Y, Kabalka GW, Bendel P (2000) Uptake and washout of borocaptate sodium and borono-phenylalanine in cultured melanoma cells: a multi-nuclear NMR study. Rad Res 154:104–112CrossRefGoogle Scholar
  22. 22.
    Porcari P, Capuani S, D’Amore E, Lecce M, La Bella A, Fasano F, Campanella R, Migneco LM, Pastore FS, Maraviglia B (2008) In vivo 19F MRI and 19F MRS of 19F-labelled boronophenylalanine–fructose complex on a C6 rat glioma model to optimize boron neutron capture therapy (BNCT). Phys Med Biol 53:6979–6989PubMedCrossRefGoogle Scholar
  23. 23.
    Tatham AT, Nakamura H, Wiener EC, Yamamoto Y (1999) Relaxation properties of a dual-labeled probe for MRI and neutron capture therapy. Magn Reson Med 42:32–36PubMedCrossRefGoogle Scholar
  24. 24.
    Zuo CS, Prasad PV, Busse P, Tang L, Zamenhof RG (1999) Proton nuclear magnetic resonance measurement of p-boronophenylalanine (BPA): a therapeutic agent for boron neutron capture therapy. Med Phys 26:1230–1236PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical Research SupportMR Center, The Weizmann Institute of ScienceShohamIsrael

Personalised recommendations