Analysis and Imaging: PET

Chapter

Abstract

BNCT confers a tumoricidal effect that is heavily influenced not by the type of irradiation but by the biological distribution of boronated substrate injected into the body. Therefore, an important step in the planning for optimal BNCT for malignant tumor is to estimate the ratio of the boron concentration in tumor to surrounding normal tissue. One of the authors (KI) have first reported the radiosynthesis of the PET imaging probe [18F]FBPA and have confirmed its efficacy in estimating boron concentrations in animal experiments. A clinical PET application using [18F]FBPA have been started in clinical protocols in Japan for the selection of candidates for BNCT. Our comparative clinical imaging studies have revealed that [18F]FBPA PET images are almost identical to the images obtained with another amino acid probe, 11C methionine (MET). Static images of FBPA or MET-PET can be used for the planning of BNCT. PET imaging with amino acid probes may contribute significantly to the establishment of an appropriate BNCT application for patients with malignant tumors.

Keywords

Positron Emission Tomography Boron Concentration Boron Neutron Capture Therapy Positron Emission Tomography Tracer Amino Acid Tracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BNCT

Boron neutron capture therapy

BPA

4-boronophenylalanine

[18F]FBPA

4-borono-2-[18F]fluorophenylalanine

FDG

2-deoxy-2-[18F]fluoro-D-glucose

ICP-AES

Inductively coupled plasma-atomic emission spectroscopy

MET

l-[methyl-11C]methionine

PET

Positron emission tomography

T/N

Tumor-to-normal-tissue ratio

Notes

Acknowledgement

We thank Dr. Kazuo Kubota from the Division of Nuclear Medicine in the Department of Radiology at the International Medical Center of Japan for kindly offering us whole-body PET images of MET uptake.

References

  1. 1.
    Aihara T, Hiratsuka J, Morita N, Uno M, Sakurai Y, Maruhashi A, Ono K, Harada T (2006) First clinical case of boron neutron capture therapy for head and neck malignancies using 18F-BPA PET. Head Neck 28:850–855PubMedCrossRefGoogle Scholar
  2. 2.
    Ariyoshi Y, Miyatake S, Kimura Y, Shimahara T, Kawabata S, Nagata K, Suzuki M, Maruhashi A, Ono K, Shimahara M (2007) Boron neuron capture therapy using epithermal neutrons for recurrent cancer in the oral cavity and cervical lymph node metastasis. Oncol Rep 18:861–866PubMedGoogle Scholar
  3. 3.
    Bauer M, Wagner CC, Langer O (2008) Microdosing studies in humans: the role of positron emission tomography. Drugs R&D 9:73–81CrossRefGoogle Scholar
  4. 4.
    Chen JC, Chang SM, Hsu FY, Wang HE, Liu RS (2004) MicroPET-based pharmacokinetic analysis of the radiolabeled boron compound [18F]FBPA-F in rats with F98 glioma. Appl Radiat Isot 61:887–891PubMedCrossRefGoogle Scholar
  5. 5.
    Cherry S, Phelps M (1996) Imaging brain function with positron emission tomography. In: Toga A, Mazziotta J (eds) Brain mapping: the methods. Academic, San Diego, pp 191–221Google Scholar
  6. 6.
    Coleman RE (2002) Value of FDG-PET scanning in management of lung cancer. Lancet 359:1361–1362PubMedCrossRefGoogle Scholar
  7. 7.
    Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285:914–924PubMedCrossRefGoogle Scholar
  8. 8.
    Groves AM, Win T, Haim SB, Ell PJ (2007) Non-[18F]FDG PET in clinical oncology. Lancet Oncol 8:822–830PubMedCrossRefGoogle Scholar
  9. 9.
    Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995PubMedGoogle Scholar
  10. 10.
    Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, Ido T (1998) Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med 39:325–333PubMedGoogle Scholar
  11. 11.
    Imahori Y, Ueda S, Ohmori Y, Sakae K, Kusuki T, Kobayashi T, Takagaki M, Ono K, Ido T, Fujii R (1998) Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part I. Clin Cancer Res 4:1825–1832PubMedGoogle Scholar
  12. 12.
    Imahori Y, Ueda S, Ohmori Y, Sakae K, Kusuki T, Kobayashi T, Takagaki M, Ono K, Ido T, Fujii R (1998) Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part II. Clin Cancer Res 4:1833–1841PubMedGoogle Scholar
  13. 13.
    Ishiwata K, Ido T, Kawamura M, Kubota K, Ichihashi M, Mishima Y (1991) 4-Borono-2-[18F]fluoro-D, L-phenylalanine as a target compound for boron neutron capture therapy: tumor imaging potential with positron emission tomography. Int J Rad Appl Instrum B 18:745–751PubMedGoogle Scholar
  14. 14.
    Ishiwata K, Ido T, Mejia AA, Ichihashi M, Mishima Y (1991) Synthesis and radiation dosimetry of 4-borono-2-[18F]fluoro-D, L-phenylalanine: a target compound for PET and boron neutron capture therapy. Int J Rad Appl Instrum A 42:325–328PubMedCrossRefGoogle Scholar
  15. 15.
    Ishiwata K, Ido T, Honda C, Kawamura M, Ichihashi M, Mishima Y (1992) 4-Borono-2-[18F]fluoro-D, L-phenylalanine: a possible tracer for melanoma diagnosis with PET. Int J Rad Appl Instrum B 19:311–318PubMedGoogle Scholar
  16. 16.
    Ishiwata K, Shiono M, Kubota K, Yoshino K, Hatazawa J, Ido T, Honda C, Ichihashi M, Mishima Y (1992) A unique in vivo assessment of 4-[10B]borono-L-phenylalanine in tumour tissues for boron neutron capture therapy of malignant melanomas using positron emission tomography and 4-borono-2-[18F]fluoro-L-phenylalanine. Melanoma Res 2:171–179PubMedCrossRefGoogle Scholar
  17. 17.
    Ishiwata K, Tsukada H, Kubota K, Nariai T, Harada N, Kawamura K, Kimura Y, Oda K, Iwata R, Ishii K (2005) Preclinical and clinical evaluation of O-[11C]methyl-L-tyrosine for tumor imaging by positron emission tomography. Nucl Med Biol 32:253–262PubMedCrossRefGoogle Scholar
  18. 18.
    Ishiwata K, Kubota K, Nariai T, Iwata R (2008) Whole-body tumor imaging: [O-11C]methyl-L-tyrosine/positron emission tomography. In: Hayat M (ed) Cancer imaging: instrument and application, vol 2. Elsevier, Amsterdam, pp 175–179Google Scholar
  19. 19.
    Kabalka GW, Smith GT, Dyke JP, Reid WS, Longford CP, Roberts TG, Reddy NK, Buonocore E, Hubner KF (1997) Evaluation of fluorine-18-BPA-fructose for boron neutron capture treatment planning. J Nucl Med 38:1762–1767PubMedGoogle Scholar
  20. 20.
    Kabalka GW, Nichols TL, Smith GT, Miller LF, Khan MK, Busse PM (2003) The use of positron emission tomography to develop boron neutron capture therapy treatment plans for metastatic malignant melanoma. J Neurooncol 62:187–195PubMedGoogle Scholar
  21. 21.
    Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, Kirihata M, Nakazawa M, Yura Y (2004) Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot 61:1069–1073PubMedCrossRefGoogle Scholar
  22. 22.
    Kubota K (2001) From tumor biology to clinical PET: a review of positron emission tomography (PET) in oncology. Ann Nucl Med 15:471–486PubMedCrossRefGoogle Scholar
  23. 23.
    Kubota R, Yamada S, Ishiwata K, Tada M, Ido T, Kubota K (1993) Cellular accumulation of 18F-labelled boronophenylalanine depending on DNA synthesis and melanin incorporation: a double-tracer microautoradiographic study of B16 melanomas in vivo. Br J Cancer 67:701–705PubMedCrossRefGoogle Scholar
  24. 24.
    Langen KJ, Muhlensiepen H, Holschbach M, Hautzel H, Jansen P, Coenen HH (2000) Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl]-L-methionine. J Nucl Med 41:1250–1255PubMedGoogle Scholar
  25. 25.
    Miyatake S, Kawabata S, Kajimoto Y, Aoki A, Yokoyama K, Yamada M, Kuroiwa T, Tsuji M, Imahori Y, Kirihata M, Sakurai Y, Masunaga S, Nagata K, Maruhashi A, Ono K (2005) Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: an efficacy study based on findings on neuroimages. J Neurosurg 103:1000–1009PubMedCrossRefGoogle Scholar
  26. 26.
    Miyatake S, Tamura Y, Kawabata S, Iida K, Kuroiwa T, Ono K (2007) Boron neutron capture therapy for malignant tumors related to meningiomas. Neurosurgery 61:82–90; discussion 90–81PubMedCrossRefGoogle Scholar
  27. 27.
    Miyatake SI, Kawabata S, Nonoguchi N, Yokoyama K, Kuroiwa T, Ono K (2009) Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas. Neuro Oncol 11(4):430–436PubMedCrossRefGoogle Scholar
  28. 28.
    Nariai T, Senda M, Ishii K, Maehara T, Wakabayashi S, Toyama H, Ishiwata K, Hirakawa K (1997) Three-dimensional imaging of cortical structure, function and glioma for tumor resection. J Nucl Med 38:1563–1568PubMedGoogle Scholar
  29. 29.
    Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, Senda M, Ishii K, Hirakawa K, Ohno K (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507PubMedCrossRefGoogle Scholar
  30. 30.
    Nariai T, Ishiwata K, Kimura Y, Inaji M, Momose T, Yamamoto T, Matsumura A, Ishii K, Ohno K (2009) PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma. Appl Radiat Isot 67:S348–S350PubMedCrossRefGoogle Scholar
  31. 31.
    Phelps ME, Mazziotta JC (1985) Positron emission tomography: human brain function and biochemistry. Science 228:799–809PubMedCrossRefGoogle Scholar
  32. 32.
    Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16:210–224PubMedGoogle Scholar
  33. 33.
    Raichle ME (1983) Positron emission tomography. Annu Rev Neurosci 6:249–267PubMedCrossRefGoogle Scholar
  34. 34.
    Sanchez del Pino MM, Peterson DR, Hawkins RA (1995) Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood–brain barrier. J Biol Chem 270:14913–14918PubMedCrossRefGoogle Scholar
  35. 35.
    Suhara T, Takano A, Sudo Y, Ichimiya T, Inoue M, Yasuno F, Ikoma Y, Okubo Y (2003) High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch Gen Psychiatry 60:386–391PubMedCrossRefGoogle Scholar
  36. 36.
    Vahatalo JK, Eskola O, Bergman J, Forsback S, Lehikoinen P, Jaaskelainen J, Solin O (2002) Synthesis of 4-dihydroxyboryl-2-[F-18] fluorophenylalanine with relatively high-specific activity. J Label Compd Radiopharm 45:697–704CrossRefGoogle Scholar
  37. 37.
    Wang HE, Liao AH, Deng WP, Chang PF, Chen JC, Chen FD, Liu RS, Lee JS, Hwang JJ (2004) Evaluation of 4-borono-2-18F-fluoro-L-phenylalanine-fructose as a probe for boron neutron capture therapy in a glioma-bearing rat model. J Nucl Med 45:302–308PubMedGoogle Scholar
  38. 38.
    Wittig A, Michel J, Moss RL, Stecher-Rasmussen F, Arlinghaus HF, Bendel P, Mauri PL, Altieri S, Hilger R, Salvadori PA, Menichetti L, Zamenhof R, Sauerwein WA (2008) Boron analysis and boron imaging in biological materials for boron neutron capture therapy (BNCT). Crit Rev Oncol Hematol 68:66–90PubMedCrossRefGoogle Scholar
  39. 39.
    Yamamoto T, Nakai K, Kageji T, Kumada H, Endo K, Matsuda M, Shibata Y, Matsumura A (2009) Boron neutron capture therapy for newly diagnosed glioblastoma. Radiother Oncol 91:80–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of NeurosurgeryTokyo Medical and Dental UniversityBunkyo-ku, TokyoJapan
  2. 2.Positron Medical Center, Tokyo Metropolitan Institute of GerontologyItabashi-ku, TokyoJapan

Personalised recommendations