Proteomic Investigations for Boron Neutron Capture Therapy

  • Pier Luigi Mauri
  • Fabrizio Basilico


Proteomic investigations are of primary importance for discovery-driven biomarker studies. In fact, for understanding the biochemical and physiological differences between tumor and normal cells/tissues, and for using these differences in compound design, synthesis, and targeting, it is important to investigate protein profiles related to physiological and pathological conditions, and to describe the effect of bioactive compounds. Today, different proteomic methodologies are available for clinical proteomic applications. In this chapter, the main steps of traditional two-dimensional gel electrophoresis (2DE) and innovative multidimensional protein identification (MudPIT) are described, which are useful for BNCT investigations. In particular, some results concerning the possibility of characterizing proteins interacting with 10boron compounds and shotgun proteomic analysis of tumor tissues for biomarker discovery using a mass spectrometry-based approach are described.


Boron Neutron Capture Therapy Proteomic Investigation Experimental Mass Spectrum Phospholipid Hydroperoxide Glutathione Peroxidase Surface Enhance Laser Desorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Sodium mercaptoundecahydro-closo-dodecaborate




Polyvinylidene fluoride transfer membranes


Multidimensional protein identification technology


Liquid tandem mass spectrometry


Immobilized pH gradient


Sodium dodecyl sulfate-polyacrylamide gel electrophoresis



The authors are grateful to Dr. A. Roveri and Dr. S. Altieri for the PHGPx reaction with BSH and neutron autoradiography, respectively.


  1. 1.
    Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphrey-Smith I (1996) From proteins to proteomes – large-scale protein identification by 2-dimensional electrophoresis and amino acid analysis. Biotechnology 14:61–65PubMedCrossRefGoogle Scholar
  2. 2.
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product mapping of the Mollicutes: mycoplasma genitalium. Electrophoresis 7:1090–1094CrossRefGoogle Scholar
  3. 3.
    Mauri PL, Petretto A, Cuccabita D, Basilico F, Di Silvestre D, Levreri I, Melioli G (2008) Fractionation techniques improve the proteomic analysis of human serum. Curr Pharm Anal 4:69–77CrossRefGoogle Scholar
  4. 4.
    Kaiser T, Kamal H, Rank A, Kolb HJ, Holler E, Ganser A, Hertenstein B, Mischak H, Weissinger EM (2004) Proteomics applied to the clinical follow-up of patients after allogeneic hematopoietic stem cell transplantation. Blood 104:340–349PubMedCrossRefGoogle Scholar
  5. 5.
    Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48:1296–1304PubMedGoogle Scholar
  6. 6.
    Florens L, Washburn MP (2006) Proteomic analysis by multidimensional protein identification technology. Methods Mol Biol 328:159–175PubMedGoogle Scholar
  7. 7.
    Sorio C, Mauri PL, Pederzoli P, Scarpa A (2006) Non-invasive cancer detection: strategies for the identification of novel cancer markers. IUBMB Life 58(4):193–198PubMedCrossRefGoogle Scholar
  8. 8.
    Anderson NL, Anderson NG (2002) The human plasma proteome – history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867PubMedCrossRefGoogle Scholar
  9. 9.
    Wolters DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690PubMedCrossRefGoogle Scholar
  10. 10.
    Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247PubMedCrossRefGoogle Scholar
  11. 11.
    Wu CC, Yates JR 3rd (2003) The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21:262–267PubMedCrossRefGoogle Scholar
  12. 12.
    Lim H, Eng J, Yates JR 3rd, Tollaksen SL, Giometti CS, Holden JF, Adams MW, Reich CI, Olsen GJ, Hays LG (2003) Identification of 2D-gel proteins: a comparison of MALDI/TOF peptide mass mapping to mu LC-ESI tandem mass spectrometry. J Am Soc Mass Spectrom 14(9):957–970PubMedCrossRefGoogle Scholar
  13. 13.
    Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201PubMedCrossRefGoogle Scholar
  14. 14.
    Mauri PL, Dehò G (2008) A proteomic approach to the analysis of RNA degradosome composition in Escherichia coli. Methods Enzymol 447:99–117PubMedCrossRefGoogle Scholar
  15. 15.
    Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928):193–197PubMedCrossRefGoogle Scholar
  16. 16.
    Maurya P, Meleady P, Dowling P, Clynes M (2007) Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res 27(3A):1247–1255PubMedGoogle Scholar
  17. 17.
    Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A, Della Peruta M, Bassi C, Miyazaki K, Sorio C (2005) Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J 19(9):1125–1127PubMedGoogle Scholar
  18. 18.
    Chen R, Yi EC, Donohoe S, Pan S, Eng J, Cooke K, Crispin DA, Lane Z, Goodlett DR, Bronner MP, Aebersold R, Brentnall TA (2005) Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 129(4):1187–1197PubMedCrossRefGoogle Scholar
  19. 19.
    Sodek KL, Evangelou AI, Ignatchenko A, Agochiya M, Brown TJ, Ringuette MJ, Jurisica I, Kislinger T (2008) Identification of pathways associated with invasive behavior by ovarian cancer cells using multidimensional protein identification technology (MudPIT). Mol Biosyst 4(7):762–773PubMedCrossRefGoogle Scholar
  20. 20.
    Salinovich O, Montelaro RC (1986) Reversible staining and peptide mapping of proteins transferred to nitrocellulose after separation by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Anal Biochem 156:341–347PubMedCrossRefGoogle Scholar
  21. 21.
    Altieri S, Bortolussi S, Bruschi P, Chiari P, Fossati F, Stella S, Prati U, Roveda L, Zonta A, Zonta C, Ferrari C, Clerici A, Nano R, Pinelli T (2008) Neutron autoradiography imaging of selective boron uptake in human metastatic tumours. Appl Radiat Isot 66(12):1850–1855PubMedCrossRefGoogle Scholar
  22. 22.
    Mauri PL, Basilico F, Wittig A, Heimans J, Sauerwein W (2006). Pharmacokinetics and metabolites of 10B-contaning compounds in biological fluids. In: Oral presentation. 12th ICNCT, Kagawa, 9 Oct 2006Google Scholar
  23. 23.
    Mauri PL, Basilico F, Pietta PG, Pasini E, Monti D, Sauerwein W (2003) New approach for the detection of BSH and its metabolites using capillary electrophoresis and electrospray ionization mass spectrometry. J Chromatogr B 788(1):9–16CrossRefGoogle Scholar
  24. 24.
    Doi A, Kawabata S, Iida K, Yokoyama K, Kajimoto Y, Kuroiwa T, Shirakawa T, Kirihata M, Kasaoka S, Maruyama K, Kumada H, Sakurai Y, Masunaga S, Ono K, Miyatake S (2008) Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. J Neurooncol 87(3):287–294PubMedCrossRefGoogle Scholar
  25. 25.
    Hale JE, Butler JP, Gelfanova V, You JS, Knierman MD (2004) A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Anal Biochem 333(1):174–181PubMedCrossRefGoogle Scholar
  26. 26.
    Winston RL, Fitzgerald MC (1998) Concentration and desalting of protein samples for mass spectrometry analysis. Anal Biochem 262(1):83–85PubMedCrossRefGoogle Scholar
  27. 27.
    Regonesi ME, Del Favero M, Basilico F, Briani F, Benazzi L, Tortora P, Mauri P, Dehò G (2006) Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie 88(2):151–161PubMedCrossRefGoogle Scholar
  28. 28.
    Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR 3rd (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17(7):676–682PubMedCrossRefGoogle Scholar
  29. 29.
    Righetti PG, Boschetti E (2007) Sherlock Holmes and the proteome – a detective story. FEBS J 274(4):897–905PubMedCrossRefGoogle Scholar
  30. 30.
    Wulfkuhle JD, Paweletz CP, Steeg PS, Petricoin EF 3rd, Liotta L (2003) Proteomic approaches to the diagnosis, treatment, and monitoring of cancer. Adv Exp Med Biol 532:59–68PubMedCrossRefGoogle Scholar
  31. 31.
    Ahram M, Flaig MJ, Gillespie JW, Duray PH, Linehan WM, Ornstein DK, Niu S, Zhao Y, Petricoin EF 3rd, Emmert-Buck MR (2003) Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 3(4):413–421PubMedCrossRefGoogle Scholar
  32. 32.
    Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS (2005) Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 4(4):409–418PubMedCrossRefGoogle Scholar
  33. 33.
    Liu W, Brock A, Chen S, Chen S, Schultz PG (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods 4(3):239–244PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Proteomics and Metabolomics UnitInstitute for Biomedical Technologies (ITB-CNR)Segrate MilanItaly

Personalised recommendations