Landslide Susceptibility Mapping at National Scale: The Italian Case Study

  • Alessandro Trigila
  • Paolo Frattini
  • Nicola Casagli
  • Filippo Catani
  • Giovanni Crosta
  • Carlo Esposito
  • Carla Iadanza
  • Daniela Lagomarsino
  • Gabriele Scarascia Mugnozza
  • Samuele Segoni
  • Daniele Spizzichino
  • Veronica Tofani
  • Serena Lari
Chapter

Abstract

Landslide susceptibility maps are key tools for land use planning, management and risk mitigation. The Landslide susceptibility map of Italy, scale 1:1,000,000 is being realized by using the Italian Landslide Inventory – Progetto IFFI and a set of contributing factors, such as surface parameters derived from 20 to20 m DEM, lithological map obtained from the geological map of Italy 1:500,000, and land use map (Corine Land Cover 2000). These databases have been subjected to a quality analysis with the aim of assessing the completeness, homogeneity and reliability of data, and identifying representative areas which may be used as training and test areas for the implementation of landslide susceptibility models. In order to implement the models, physiographic domains of homogeneous geology and geomorphology have been identified, and landslides have been divided into three main classes in order to take into account specific sets of conditioning factors: (a) rockfalls and rock-avalanches; (b) slow mass movements, (c) debris flows. The modelling tests performed with different techniques (Discriminant Anaysis, Logistic Regression, Bayesian Tree Random Forest) provided good results, once applied with the appropriate selection of training and validations sets and with a significant number of statistical units.

Keywords

Landslide Susceptibility Italy Landslide inventory 

References

  1. Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59(1–2):83–102CrossRefGoogle Scholar
  2. Beven KJ, Kirkby MJ (1979) A physically-based variable contributing area model of basin hydrology. Hydrol Sci Bull 24(1):43–69CrossRefGoogle Scholar
  3. Büttner G, Feranec J, Jaffrain G (2002) Corine land cover update 2000 technical guidelines. European Environmental Agency technical report 89, 56 ppGoogle Scholar
  4. Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Process Landf 28:1125–1142CrossRefGoogle Scholar
  5. Compagnoni B, Damiani AV, Valletta M, Finetti I, Cirese E, Pannuti S, Sorrentino F, Rigano C (1976–1984) Carta Geologica d’Italia alla scala 1:500,000 (5 fogli). Servizio Geologico d’Italia, RomaGoogle Scholar
  6. Delmonaco G, Leoni G, Margottini C, Puglisi C (2002) La propensione del territorio italiano ai fenomeni franosi. Ital J Eng Geol Environ 1:111–116Google Scholar
  7. Günther A, Reichenbach P, Hervás J (2008) Approaches for delineating areas susceptible to landslides in the framework of the European soil thematic strategy. In: Proceedings of the first world landslide forum, Tokyo, 18–21 Nov 2008, pp 235–238Google Scholar
  8. Hervás J (ed) (2007) Guidelines for mapping areas at risk of landslides in Europe. In: Proceedings of the experts meeting held on 23–24 October 2007. Institute for Environment and Sustainability Joint Research Centre (JRC), Ispra, Italy EUR 23093 EN – 2007Google Scholar
  9. Hervás J, Günther A, Reichenbach P, Malet JP, Van Den Eeckhaut M (2010) Harmonised approaches for landslide susceptibility mapping in Europe. In: Malet JP, Glade T, Casagli N (eds) Proceedings of international conference on mountain risks: bringing science to society, Florence, 24–26 Nov 2010. CERG Editions, Strasbourg, pp 501–505Google Scholar
  10. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29(6):687–711CrossRefGoogle Scholar
  11. Malet JP, Thiery Y, Hervàs J, Günther A, Puissant A, Grandjean G (2010) Landslide susceptibility mapping at 1:1M scale over France: exploratory results with a heuristic model. In: Malet JP, Glade T, Casagli N (eds) Proceedings of the international conference mountain risks: bringing science to society, Florence, Italy, 24–26 Nov 2010. CERG Editions, Strasbourg, pp 315–320Google Scholar
  12. Sappington JM, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. J Wildl Manage 71(5):1419–1426CrossRefGoogle Scholar
  13. Trigila A, Iadanza C (2008) Landslide in Italy – special report 2008 (Rapporti 83/2008). ISPRA, Roma, 32 pp. URL: http://www.isprambiente.gov.it/site/it-IT/Pubblicazioni/Rapporti/Documenti/rapporto_83_08_landslides.html
  14. Trigila A, Iadanza C, Spizzichino D (2010) Quality assessment of the Italian landslide inventory using GIS processing. Landslides 7(4):455–470CrossRefGoogle Scholar
  15. Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet JP, Picarelli L (2010) Calibration of logistic regression coefficients from limited landslide inventory data for European-wide landslide susceptibility modelling. In: Malet J P, Glade T, Casagli N (eds) Proceedings of the international conference mountain risks: bringing science to society, Florence, Italy, 24–26 Nov 2010. CERG Editions, Strasbourg, pp 515–521Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alessandro Trigila
    • 1
  • Paolo Frattini
    • 2
  • Nicola Casagli
    • 3
  • Filippo Catani
    • 3
  • Giovanni Crosta
    • 2
  • Carlo Esposito
    • 4
  • Carla Iadanza
    • 1
  • Daniela Lagomarsino
    • 3
  • Gabriele Scarascia Mugnozza
    • 4
  • Samuele Segoni
    • 3
  • Daniele Spizzichino
    • 1
  • Veronica Tofani
    • 3
  • Serena Lari
    • 2
  1. 1.ISPRA – Italian National Institute for Environmental Protection and ResearchGeological Survey of ItalyRomeItaly
  2. 2.Department of Geological Sciences and GeotechnologiesUniversity of Milano-BicoccaMilanItaly
  3. 3.Department of Earth SciencesUniversity of FlorenceFlorenceItaly
  4. 4.Department of Earth SciencesUniversity of Rome “Sapienza”RomeItaly

Personalised recommendations