Amplification of the Destructive Effects of Rock Falls by Sliding on Volcanic Soils: Examples from the Anaga Massif (Tenerife Island, Spain)

  • Jorge Yepes Temiño
  • Martín Jesús Rodríguez-Peces
  • Sara Marchesini
  • Sergio Leyva
  • José Luis Díaz-Hernández
Chapter

Abstract

This paper provides geomorphological and geotechnical observations on the amplification of the destructive behaviour of rock falls on rocky slopes in the Anaga massif (Tenerife Island, Spain) covered with soils rich in organic matter, within a high rainfall regime. The soil organic matter would be the determinant factor of this process, because it would reduce the soil strength as a result of overcoming the liquid limit during heavy rains. Thus the soil could develop a semi-fluid consistency, triggering a more efficient sliding of the blocks of rock along the slope and, hence, amplifying the destructive effect of the rock falls. Other potential determinant factor would be that the soil fine fraction could undergo a sudden change in its microfabric related to the dynamic load caused by the rock fall, similar to the mechanism described to explain the landslides developed in clayey soils.

Keywords

Canary Islands Clay Humus Rock fall Tenerife Volcanic soil 

References

  1. AEMET (2004) Guía resumida del clima en España: 1971–2000. Plan Estadístico Nacional 2001–2004. Dirección General del Instituto Nacional de Meteorología, Ministerio de Medio Ambiente (ed), Madrid, Spain. (DL M3219-93), 257pGoogle Scholar
  2. AENOR (1993) UNE 103-104/93. Test for the plastic limit of a soil. Asociación Española de Normalización y Certificación (ed), Madrid, Spain. (DL M3219-93), 2pGoogle Scholar
  3. AENOR (1994a) UNE 103-301/94. Determination of a soil density. Method of the hydrostatic balance. Asociación Española de Normalización y Certificación (ed), Madrid, Spain. (DL M5292-94), 2pGoogle Scholar
  4. AENOR (1994b) UNE 103-302/94. Determination of the relative density of the particles of a soil. Asociación Española de Normalización y Certificación (ed), Madrid, Spain. (DL M5293-94), p 3Google Scholar
  5. AENOR (1994c) UNE 103-103/94. Determination of the liquid limit of a soil by the Casagrande method. Asociación Española de Normalización y Certificación (ed), Madrid, Spain. (DL M5291-94), 9pGoogle Scholar
  6. AENOR (1994d) One-dimensional consolidation test in an oedometric cell. UNE 103-405-94, Asociación Española de Normalización y Certificación (ed), Madrid, Spain. (DL M21118-94), 10pGoogle Scholar
  7. AENOR (1996) Determination of expansivity in a soil in the Lambe apparatus. UNE 103-600-96, Asociación Española de Normalización y Certificación (ed), Madrid, Spain. (DL 16171:1996), 10pGoogle Scholar
  8. AENOR (1998) UNE 103-401/98. Determination of the shear strength of a soil with the direct shear box. Asociación Española de Normalización y Certificación, Madrid (ed), Madrid, Spain. (DL M29325:1998), 34pGoogle Scholar
  9. Ancochea E, Barrera JL, Bellido F, Benito R, Brändle JL, Cebriá JM, Coello J, Cubas CR, De La Nuez J, Doblas M, Gómez JA, Hernán F, Herrera R, Huertas MJ, López-Ruiz J, Martí J, Muñoz M, Sagredo J (2004) Canarias y el vulcanismo neógeno peninsular. In: Vera JA (ed) Geología de España. IGME-SGE, Madrid. (ISBN 84-7840-546-1), pp 637–671Google Scholar
  10. ASTM (2000) ASTM-D 2487/00. Standard classification of soils for engineering purposes (Unified soil classification system). American society for testing and materials, West Conshohocken, PA. (ISBN D2487/00), 11pGoogle Scholar
  11. Ayenew T, Barbieri G (2005) Inventory of landslides and susceptibility mapping in the Dessie area, northern Ethiopia. Eng Geol 77:1–15CrossRefGoogle Scholar
  12. Downs RT, Hall-Wallace M (2003) The American mineralogist crystal structure database. Am Mineral 88:247–250Google Scholar
  13. Huang RQ, Liu WH, Zhou JP, Pei XJ (2010) Experimental field study of movement charateristics of rock blocks falling down a slope. J Earth Sci 21(3):330–339CrossRefGoogle Scholar
  14. Khaldoun A, Moller P, Fall A, Wegdam G, De Leeuw B, Méheust Y, Fossum JO, Bonn D (2009) Quick clay and landslides of clayey soils. Phys Rev Lett 103(188301):1–4Google Scholar
  15. Martín-Ramos JD (2004) Using XPowder®, a sofware package for powder X-ray diffraction analysis. D.L.GR-1001/04. Spain. (ISBN: 84-609-1497-6), 10pGoogle Scholar
  16. Okamoto T, Larsen JO, Matsuura S, Asano S, Takeuchi Y, Grande L (2004) Displacement properties of landslide masses at the initiation of failure in quick clay deposits and the effects of meteorological and hydrological factors. Eng Geol 72:233–251CrossRefGoogle Scholar
  17. Perret D, Locata J, Martignonib P (1996) Thixotropic behavior during shear of a fine-grained mud from Eastern Canada. Eng Geol 43:31–44CrossRefGoogle Scholar
  18. Snyder RL, Bish DL (1989) Quantitative analysis. In: Bish DL, Post JE (eds) Modern powder diffraction. Reviews in Mineralogy 20. Mineralogical Society of America, pp 101–143Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jorge Yepes Temiño
    • 1
  • Martín Jesús Rodríguez-Peces
    • 2
  • Sara Marchesini
    • 3
    • 4
  • Sergio Leyva
    • 5
  • José Luis Díaz-Hernández
    • 6
  1. 1.Department of Civil EngineeringUniversity of Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Department of GeodynamicsUniversity Complutense of Madrid, Ciudad Universitaria s/nMadridSpain
  3. 3.Laboratory of Concretes, Soils and AsphaltsUniversity of Las Palmas de Gran CanariaLas PalmasSpain
  4. 4.Department of Civil EngineeringPolytechnic University of MarcheAnconaItaly
  5. 5.Technical Road Maintenance and Exploitation ServiceLocal Government of TenerifeSanta Cruz de TenerifeSpain
  6. 6.Research and Training Institute for Agriculture and Fishery (IFAPA)Junta de AndalucíaGranadaSpain

Personalised recommendations