Skip to main content

Landslide Inventory and Susceptibility Mapping in a Mexican Stratovolcano

  • Chapter
  • First Online:
  • 3420 Accesses

Abstract

This paper provides an overview of the on-going research project from the Institute of Geography at the National Autonomous University of Mexico (UNAM) that seeks to conduct multi-temporal landslide inventories and produce landslide susceptibility maps by using Geographic Information Systems (GIS). The Río Chiquito-Barranca del Muerto watershed on the southwestern flank of Pico de Orizaba volcano in Mexico is selected as a case–control study area. First, the project aims to derive a landslide inventory map from a representative sample of landslides using aerial photography and field work. Next, Multiple Logistic Regression (MLR) is used to examine the relation between landsliding and several independent variables (elevation, slope, contributing area, land use, geology, and terrain curvature) to create the susceptibility map. Finally, the model is compared with the reality expressed by the inventory map. In this study, the results of the landslide inventory and susceptibility mapping techniques are presented and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angeli MG, Pasuto A, Silvano S (2000) A critical review of landslide monitoring experiences. Eng Geol 55:133–147

    Article  Google Scholar 

  • Blahut J, Van Westen CJ, Sterlacchini S (2010) Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 119(1/2):36–51

    Article  Google Scholar 

  • Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earth flows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 72:250–271

    Article  Google Scholar 

  • Capra L, Macías JL, Scott KM, Abrams M, Garduño-Monroy VH (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, México. Behavior, and implication for hazard assessment. J Volcanol Geotherm Res 113(1/2):81–110

    Article  Google Scholar 

  • Carrasco-Núñez G, Rose WI (1995) Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), México, 8.5–9.0 ka. J Volcanol Geotherm Res 69(3/4):197–215

    Article  Google Scholar 

  • Carrasco-Núñez G, Vallance JW, Rose WI (1993) A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 59(1/2):35–46

    Article  Google Scholar 

  • Concha-Dimas A, Cerca M, Rodríguez-Elizarrarás S, Watters RJ (2005) Geomorphological evidence of the influence of pre-existing basement structure on emplacement and deformation of volcanic edifices at the Cofre de Perote-Pico de Orizaba chain and implications for avalanche generation. Geomorphology 72:19–39

    Article  Google Scholar 

  • Cruden DM, Varnes D (1996) Landslide types and processes. In: Turner AK, Shuster RL (eds) Landslides: investigation and mitigation. Special Report 247, Transportation Research Board, pp 36–75

    Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • De la Cruz-Reyna S, Carrasco-Núñez G (2002) Probabilistic hazard analysis of Citlaltépetl (Pico de Orizaba) Volcano, eastern Mexican Volcanic Belt. J Volcanol Geotherm Res 113:307–318

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2007) Comparing landslide inventory maps. Geomorphology 94:268–289

    Article  Google Scholar 

  • Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. In: Sassa K, Canuti P (eds) Landslides – disaster risk reduction. Springer, Berlin, pp 321–349. ISBN 978-3-540-69966-8

    Chapter  Google Scholar 

  • Hubbard BE (2001) Volcanic hazard mapping using aircraft, satellite and digital topographic data: Pico de Orizaba (Citlaltépetl), México. Thesis, Department of Geology, SUNY, at Buffalo

    Google Scholar 

  • Hubbard BE, Sheridan MF, Carrasco-Nunez G, Díaz-Castellon R, Rodriguez S (2007) Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topography. J Volcanol Geotherm Res 160(1):99–124

    Article  Google Scholar 

  • Legorreta Paulin G, Bursik M (2008) Logisnet: a tool for multimethod, multiple soil layers slope stability analysis. Comput Geosci 35(5):1007–1016

    Google Scholar 

  • Legorreta Paulín G, Bursik M (2009) Assessment of landslides susceptibility: LOGISNET: a tool for multimethod, multilayer slope stability analysis. VDM Verlag Dr. Müller, Saarbrücken, p 360. ISBN 9783639154771

    Google Scholar 

  • Legorreta-Paulin G, Bursik M, Lugo HJ, Zamorano-Orozco JJ (2010) Effect of pixel size on cartographic representation of shallow and deep-seated landslide, and its collateral effects on the forecasting of landslides by SINMAP and multiple logistic regression landslide models. Phys Chem Earth 35:137–148

    Article  Google Scholar 

  • Macías JL (2005) Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geológica Mexicana. Volumen Conmemorativo del Centenario Temas Selectos de la Geología Mexicana. LVII(3):379–424

    Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Palacios D, Parrilla G, Zamorano JJ (1999) Paraglacial and postglacial debris flows on Little Ice Age terminal moraine: Jamapa Glacier, Pico de Orizaba (Mexico). Geomorphology 28:95–118

    Article  Google Scholar 

  • Sheridan MF, Carrasco-Nuñez G, Hubbard BE, Siebe C, Rodriguez-Elizarraraz S (2001) Mapa de peligros del Volcan Citlaltépetl (Pico de Orizaba). Inst Geog, Univ Nac Autonoma Mexico, 1:250,000 scale

    Google Scholar 

  • Siebe C, Komorowski JC, Sheridan MF (1992) Morphology and emplacement collapse of an unusual debris avalanche deposit at Jocotitlán Volcano, Central Mexico. Bull Volcanol 54:573–589

    Article  Google Scholar 

  • Siebe C, Abrams M, Sheridan MF (1993) Major Holocene block-and-ash fan at the western slope of ice-capped Pico de Orizaba volcano, Mexico: implications for future hazards. J Volc Geotherm Res 59:1–33

    Article  Google Scholar 

  • Van Den Eeckhaunt M, Poesen J, Verstraeten G, Vanacker V, Moeyersons J, Nyssen J, Van Beek LPH (2005) The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 67:351–363

    Article  Google Scholar 

  • Washington State Department of Natural Resources (DNR), Forest Practices Division (2006) Landslide hazard zonation (LHZ) mapping protocol, version 2.0. http://www.dnr.wa.gov/BusinessPermits/Topics/LandslideHazardZonation/Pages/fp_lhz_review.aspx

  • Weirich F, Blesius L (2007) Comparison of satellite and air photo based landslide susceptibility maps. Geomorphology 87:352–364

    Article  Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21:337–342

    Google Scholar 

Download references

Acknowledgements

The authors thank authorities from the Department of Geology at the University of Buffalo, the International Consortium on Landslides (ICL), the Washington State Department of Natural Resources (DNR) Forest Practices Division, the WA-DNR Geology & Earth Resources Division and the Geo-Spatial Analysis Laboratory from the Institute of Geography, UNAM for their approval and help. This research was supported by the iniciativa de apoyo complementario a la realización de las obras determinadas (IACOD), UNAM, Grant no. IA100711 and the International Programme on Landslides (IPL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Legorreta Paulín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paulín, G.L., Bursik, M., Ramírez-Herrera, M.T., Lugo-Hubp, J., Orozco, J.J.Z., Alcántara-Ayala, I. (2013). Landslide Inventory and Susceptibility Mapping in a Mexican Stratovolcano. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31325-7_18

Download citation

Publish with us

Policies and ethics