Mouse Genome Mapping and Genomics

Chapter
Part of the Genome Mapping and Genomics in Animals book series (MAPPANIMAL, volume 4)

Abstract

Mice probably first became associated with humans after the domestication of grasses, about 10,000–12,000 years ago. More recently, mice have become the most widely used mammalian laboratory animal, in particular because of the extensive genetic “tool-box” available to manipulate the mouse genome. Mice are prolific, have short generation times, and can be inbred successfully, traits that have contributed to their use in genetics. One of the most versatile genetic “tools” in the mouse is the ability to modify almost any sequence in embryonic stem cells and for the altered allele to be inherited. The resulting “knockout” mice have been used to model many human diseases. The first mouse genome map was constructed by linkage analysis of mutations that caused visible traits and is still of immense value, but the development of rapid genome sequencing has accelerated the task of identifying underlying causative variants. The mouse genome, composed of 20 pairs of nuclear chromosomes and a mitochondrial chromosome, contains about 22,000 protein-coding genes. By comparison with the human genome sequence, it is clear that there has been both expansion and contraction of specific protein coding gene families in the mouse. Genes that encode functional RNAs, rather than proteins, are also abundant in the mouse; a notable example is the XIST long noncoding RNA, which plays a key role in equalizing transcript levels for X-linked genes between the sexes. The mouse has been the subject of intense functional analysis, using not only gene knockouts, but also conditional mutagenesis, RNAi knockdowns, and random mutagenesis producing point mutations, deletions, and rearrangements. Systematic phenotyping is being applied to these mutant lines and also to genetic reference populations (GRP) to better capture novel traits. The genetic and functional genomic tool-box in the mouse has grown extensively in the last two decades and we are ever closer to achieving the goal of determining function(s) for every mouse gene and so, by inference, for their human equivalent.

Keywords

Long Terminal Repeat Mouse Genome Inbred Strain Recombinant Inbred Collaborative Cross 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Glossary

Congenic strains

In which selected chromosomal regions from one inbred strain have been introgressed onto the genetic background of a distinct strain.

Conplastic strains

Strains in which the mitochondrial genome from one strain has been transferred onto the nuclear genome of another.

Consomic strains

Special case of congenic strain, in which a whole chromosome from one inbred strain has been bred onto the genetic background of a distinct strain.

Heterogeneous stocks

Genetically heterogeneous stock of mice descended from a few, e.g., eight, inbred progenitor strains and derived from a pseudorandom breeding scheme over a large (~50) number of generations.

Inbred strains

Produced under a strict regime of at least 20 generations of sister–brother or equivalent matings—these mice will have minimal or no heterozygous loci.

Mutant stocks/strains

A mouse stock or inbred strain in which any permanent alteration in the DNA sequence, including chromosomal rearrangement or point mutation, has occurred.

Recombinant congenic strains

Strains produced by intercrossing two inbred strains, then back-crossing to one of the parental strains for a few generations (typically ~2–3 generations), then inbred, without any selection.

Recombinant inbred strains

A set of strains derived by the mating of individuals from the F2 generation of a cross of two inbred strains and from each subsequent generation in accordance with a strict routine of inbreeding.

Wild-derived strains

Inbred strains derived from wild-caught mice, e.g., MSM/Ms, which is derived from a Japanese wild mouse, Mus musculus molossinus.

References

  1. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, Guttman M, Grenier JK, Li W, Zuk O, Schubert LA, Birditt B, Shay T, Goren A, Zhang X, Smith Z, Deering R, McDonald RC, Cabili M, Bernstein BE, Rinn JL, Meissner A, Root DE, Hacohen N, Regev A (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326:257–263PubMedGoogle Scholar
  2. Argmann CA, Chambon P, Auwerx J (2005) Mouse phenogenomics: the fast track to “systems metabolism”. Cell Metab 2:349–360PubMedGoogle Scholar
  3. Avner P, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2:59–67PubMedGoogle Scholar
  4. Avner P, Bruls T, Poras I, Eley L, Gas S, Ruiz P, Wiles MV, Sousa-Nunes R, Kettleborough R, Rana A, Morissette J, Bentley L, Goldsworthy M, Haynes A, Herbert E, Southam L, Lehrach H, Weissenbach J, Manenti G, Rodriguez-Tome P, Beddington R, Dunwoodie S, Cox RD (2001) A radiation hybrid transcript map of the mouse genome. Nat Genet 29:194–200PubMedGoogle Scholar
  5. Bai J, Ramos RL, Ackman JB, Thomas AM, Lee RV, LoTurco JJ (2003) RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 6:1277–1283PubMedGoogle Scholar
  6. Barbaric I, Miller G, Dear TN (2007) Appearances can be deceiving: phenotypes of knockout mice. Brief Funct Genomic Proteomic 6:91–103PubMedGoogle Scholar
  7. Belgard TG, Marques AC, Oliver PL, Abaan HO, Sirey TM, Hoerder-Suabedissen A, Garcia-Moreno F, Molnar Z, Margulies EH, Ponting CP (2011) A transcriptomic atlas of mouse neocortical layers. Neuron 71:605–616PubMedGoogle Scholar
  8. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IM, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DM, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC, Carter NP, Castillo N, Chiara ECM, Chang S, Neil Cooley R, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang GD, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling Ng B, Novo SM, O’Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Chris Pinkard D, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti G, Vandevondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Mullikin JC, Hurles ME, McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59PubMedGoogle Scholar
  9. Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28PubMedGoogle Scholar
  10. Brown SDM, Hancock JM, Gates H (2006) Understanding mammalian genetic systems: the challenge of phenotyping in the mouse. PLoS Genet 2:e118PubMedGoogle Scholar
  11. Burgio G, Szatanik M, Guenet J-L, Arnau M-R, Panthier J-J, Montagutelli X (2007) Interspecific recombinant congenic strains between C57BL/6 and mice of the mus spretus species: a powerful tool to dissect genetic control of complex traits. Genetics 177:2321–2333PubMedGoogle Scholar
  12. Cai WW, Chow CW, Damani S, Gregory SG, Marra M, Bradley A (2001) An SSLP marker-anchored BAC framework map of the mouse genome. Nat Genet 29:133–134PubMedGoogle Scholar
  13. Carlson CM, Largaespada DA (2005) Insertional mutagenesis in mice: new perspectives and tools. Nat Rev Genet 6:568–580PubMedGoogle Scholar
  14. Carninci P (2006) Tagging mammalian transcription complexity. Trends Genet 22:501–510PubMedGoogle Scholar
  15. Carninci P (2007) Constructing the landscape of the mammalian transcriptome. J Exp Biol 210:1497–1506PubMedGoogle Scholar
  16. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117PubMedGoogle Scholar
  17. Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP, The Mouse Genome Sequencing C (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7:e1000112PubMedGoogle Scholar
  18. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E, Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC, Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D, Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL, Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu HC, Iraqi FA, Ivandic B, Jacob HJ, Jansen RC, Jepsen KJ, Johnson DK, Johnson TE, Kempermann G, Kendziorski C, Kotb M, Kooy RF, Llamas B, Lammert F, Lassalle JM, Lowenstein PR, Lu L, Lusis A, Manly KF, Marcucio R, Matthews D, Medrano JF, Miller DR, Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Morris DG, Mott R, Nadeau JH, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Page GP, Paigen B, Paigen K, Palmer AA, Pan HJ, Peltonen-Palotie L, Peirce J, Pomp D, Pravenec M, Prows DR, Qi Z, Reeves RH, Roder J, Rosen GD, Schadt EE, Schalkwyk LC, Seltzer Z, Shimomura K, Shou S, Sillanpaa MJ, Siracusa LD, Snoeck HW, Spearow JL, Svenson K, Tarantino LM, Threadgill D, Toth LA, Valdar W, de Villena FP, Warden C, Whatley S, Williams RW, Wiltshire T, Yi N, Zhang D, Zhang M, Zou F (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137PubMedGoogle Scholar
  19. Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128:9–13PubMedGoogle Scholar
  20. Cook MJ (1965) The anatomy of the laboratory mouse. Elsevier, AmsterdamGoogle Scholar
  21. Cormier RT, Hong KH, Halberg RB, Hawkins TL, Richardson P, Mulherkar R, Dove WF, Lander ES (1997) Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet 17:88–91PubMedGoogle Scholar
  22. Cox A, Ackert-Bicknell CL, Dumont BL, Ding Y, Bell JT, Brockmann GA, Wergedal JE, Bult C, Paigen B, Flint J, Tsaih SW, Churchill GA, Broman KW (2009) A new standard genetic map for the laboratory mouse. Genetics 182:1335–1344PubMedGoogle Scholar
  23. Cuenot L (1902) Notes et revues. Arch Zool Exp Gen:xxviiGoogle Scholar
  24. Cui XS, Li XY, Shen XH, Bae YJ, Kang JJ, Kim NH (2007) Transcription profile in mouse four-cell, morula, and blastocyst: genes implicated in compaction and blastocoel formation. Mol Reprod Dev 74:133–143PubMedGoogle Scholar
  25. Curwen V, Eyras E, Andrews TD, Clarke L, Mongin E, Searle SMJ, Clamp M (2004) The Ensembl automatic gene annotation system. Genome Res 14:942–950PubMedGoogle Scholar
  26. Dejager L, Libert C, Montagutelli X (2009) Thirty years of Mus spretus: a promising future. Trends Genet 25:234–241PubMedGoogle Scholar
  27. Denny P, Bate R, Mallon AM (2001) What use is the human genome for understanding the mouse? Genome Biol 2(11):COMMENT2009PubMedGoogle Scholar
  28. Dietrich W, Katz H, Lincoln SE, Shin HS, Friedman J, Dracopoli NC, Lander ES (1992) A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131:423–447PubMedGoogle Scholar
  29. Dietrich WF, Miller J, Steen R, Merchant MA, Damron-Boles D, Husain Z, Dredge R, Daly MJ, Ingalls KA, O’Connor ETJA, DeAngelis MM, Levinson KDML, Goodman N, Copeland NG, Jenkins NA, Hawkins TL, Stein L, Page DC, Lander ES (1996) A comprehensive genetic map of the mouse genome. Nature 380:149–152PubMedGoogle Scholar
  30. Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini M-A, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo M-L, Martinez S, Baldock RA, Eichele G, Ballabio A (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9:e1000582PubMedGoogle Scholar
  31. Durrant C, Tayem H, Yalcin B, Cleak J, Goodstadt L, Pardo-Manuel de Villena F, Mott R, Iraqi FA (2011) Collaborative cross mice and their power to map host susceptibility to Aspergillus fumigatus infection. Genome Res 21:1239–1248PubMedGoogle Scholar
  32. Emes RD, Goodstadt L, Winter EE, Ponting CP (2003) Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum Mol Genet 12:701–709PubMedGoogle Scholar
  33. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874PubMedGoogle Scholar
  34. Evans EP (1996) Standard idiogram. In: Lyon M, Rastan S, Brown S (eds) Genetic variants and strains of the laboratory mouse, 3rd edn. Oxford University Press, Oxford, pp 1446–1448Google Scholar
  35. Flaherty L: Generation, identification, and recovery of mouse mutations. Methods 1998, 14:107–118. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9571070PubMedGoogle Scholar
  36. Gailus-Durner V, Fuchs H, Becker L, Bolle I, Brielmeier M, Calzada-Wack J, Elvert R, Ehrhardt N, Dalke C, Franz TJ, Grundner-Culemann E, Hammelbacher S, Holter SM, Holzlwimmer G, Horsch M, Javaheri A, Kalaydjiev SV, Klempt M, Kling E, Kunder S, Lengger C, Lisse T, Mijalski T, Naton B, Pedersen V, Prehn C, Przemeck G, Racz I, Reinhard C, Reitmeir P, Schneider I, Schrewe A, Steinkamp R, Zybill C, Adamski J, Beckers J, Behrendt H, Favor J, Graw J, Heldmaier G, Hofler H, Ivandic B, Katus H, Kirchhof P, Klingenspor M, Klopstock T, Lengeling A, Muller W, Ohl F, Ollert M, Quintanilla-Martinez L, Schmidt J, Schulz H, Wolf E, Wurst W, Zimmer A, Busch DH, de Angelis MH (2005) Introducing the German mouse clinic: open access platform for standardized phenotyping. Nat Methods 2:403–404PubMedGoogle Scholar
  37. Goll J, Uetz P (2006) The elusive yeast interactome. Genome Biol 7:223PubMedGoogle Scholar
  38. Granville CA, Dennis PA (2005) An overview of lung cancer genomics and proteomics. Am J Respir Cell Mol Biol 32:169–176PubMedGoogle Scholar
  39. Gregorova S, Divina P, Storchova R, Trachtulec Z, Fotopulosova V, Svenson KL, Donahue LR, Paigen B, Forejt J (2008) Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res 18:509–515PubMedGoogle Scholar
  40. Gu H, Zou Y-R, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73:1155–1164PubMedGoogle Scholar
  41. Guenet JL, Bonhomme F (2003) Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet 19:24–31PubMedGoogle Scholar
  42. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227PubMedGoogle Scholar
  43. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S, Morgan PJ, Oozageer R, Priestley JV, Averill S, King VR, Ball S, Peters J, Toda T, Yamamoto A, Hiraoka Y, Augustin M, Korthaus D, Wattler S, Wabnitz P, Dickneite C, Lampel S, Boehme F, Peraus G, Popp A, Rudelius M, Schlegel J, Fuchs H, Hrabe de Angelis M, Schiavo G, Shima DT, Russ AP, Stumm G, Martin JE, Fisher EM (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812PubMedGoogle Scholar
  44. Haldane J, Sprunt A, Haldane N (1915) Reduplication in mice. J Genet 5:133–135Google Scholar
  45. Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131PubMedGoogle Scholar
  46. Hitotsumachi S, Carpenter DA, Russell WL (1985) Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc Natl Acad Sci USA 82:6619–6621PubMedGoogle Scholar
  47. Hitz C, Steuber-Buchberger P, Delic S, Wurst W, Kuhn R (2009) Generation of shRNA transgenic mice. Methods Mol Biol 530:101–129PubMedGoogle Scholar
  48. Hudson TJ, Church DM, Greenaway S, Nguyen H, Cook A, Steen RG, Van Etten WJ, Castle AB, Strivens MA, Trickett P, Heuston C, Davison C, Southwell A, Hardisty R, Varela-Carver A, Haynes AR, Rodriguez-Tome P, Doi H, Ko MS, Pontius J, Schriml L, Wagner L, Maglott D, Brown SD, Lander ES, Schuler G, Denny P (2001) A radiation hybrid map of mouse genes. Nat Genet 29:201–205PubMedGoogle Scholar
  49. Ivics Z, Li MA, Mates L, Boeke JD, Nagy A, Bradley A, Izsvak Z (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6:415–422PubMedGoogle Scholar
  50. Jones AR, Overly CC, Sunkin SM (2009) The Allen brain atlas: 5 years and beyond. Nat Rev Neurosci 10:821–828PubMedGoogle Scholar
  51. Kaufman MH (1992) The atlas of mouse development. Academic, San DiegoGoogle Scholar
  52. Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632PubMedGoogle Scholar
  53. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellaker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Bala S, Stalker J, Mott R, Durbin R, Jackson IJ, Czechanski A, Guerra-Assuncao JA, Donahue LR, Reinholdt LG, Payseur BA, Ponting CP, Birney E, Flint J, Adams DJ (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294PubMedGoogle Scholar
  54. Keeler CE, Fuji S (1937) The antiquity of mouse variations in the orient. J Hered 28:93–96Google Scholar
  55. Kim UJ, Birren BW, Slepak T, Mancino V, Boysen C, Kang HL, Simon MI, Shizuya H (1996) Construction and characterization of a human bacterial artificial chromosome library. Genomics 34:213–218PubMedGoogle Scholar
  56. Kissler S, Stern P, Takahashi K, Hunter K, Peterson LB, Wicker LS (2006) In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nat Genet 38:479–483PubMedGoogle Scholar
  57. Kouri RE, Miller DA, Miller OJ, Dev VG, Grewal MS, Hutton JJ (1971) Identification by quinacrine fluorescence of the chromosome carrying mouse linkage group I in the Cattanach translocation. Genetics 69:129–132PubMedGoogle Scholar
  58. Kozak C, Nichols E, Ruddle FH (1975) Gene linkage analysis in the mouse by somatic cell hybridization: assignment of adenine phosphoribosyltransferase to chromosome 8 and alpha-galactosidase to the X chromosome. Somatic Cell Genet 1:371–382PubMedGoogle Scholar
  59. Kremer H, van Wijk E, Marker T, Wolfrum U, Roepman R (2006) Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 15(2):R262–270PubMedGoogle Scholar
  60. Lachmann P (2010) Genetic and cultural evolution: from fossils to proteins, and from behaviour to ethics. Eur Rev 18:297–309Google Scholar
  61. Lee C, Wang Q (2005) Bioinformatics analysis of alternative splicing. Brief Bioinform 6:23–33PubMedGoogle Scholar
  62. Lyon MF (2003) The Lyon and the LINE hypothesis. Semin Cell Dev Biol 14:313–318PubMedGoogle Scholar
  63. Lyon MF, Rastan S, Brown SDM (1996) Genetic variants and strains of the laboratory mouse, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  64. Madan M, Amar S (2008) Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings. PLoS One 3:e3204PubMedGoogle Scholar
  65. Mak TW (2007) Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell 131:1027–1031PubMedGoogle Scholar
  66. Markley JL, Aceti DJ, Bingman CA, Fox BG, Frederick RO, Makino S, Nichols KW, Phillips GN Jr, Primm JG, Sahu SC, Vojtik FC, Volkman BF, Wrobel RL, Zolnai Z (2009) The center for eukaryotic structural genomics. J Struct Funct Genomics 10:165–179PubMedGoogle Scholar
  67. Marra M, Hillier L, Kucaba T, Allen M, Barstead R, Beck C, Blistain A, Bonaldo M, Bowers Y, Bowles L, Cardenas M, Chamberlain A, Chappell J, Clifton S, Favello A, Geisel S, Gibbons M, Harvey N, Hill F, Jackson Y, Kohn S, Lennon G, Mardis E, Martin J, Mila L, McCann R, Morales R, Pape D, Person B, Prange C, Ritter E, Soares M, Schurk R, Shin T, Steptoe M, Swaller T, Theising B, Underwood K, Wylie T, Yount T, Wilson R, Waterston R (1999) An encyclopedia of mouse genes. Nat Genet 21:191–194PubMedGoogle Scholar
  68. McCarthy LC, Terrett J, Davis ME, Knights CJ, Smith AL, Critcher R, Schmitt K, Hudson J, Spurr NK, Goodfellow PN (1997) A first-generation whole genome-radiation hybrid map spanning the mouse genome. Genome Res 7:1153–1161PubMedGoogle Scholar
  69. Muller H (1927) Artificial transmutation of the gene. Science 66:84–87PubMedGoogle Scholar
  70. Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GL, Wides R, Halpern A, Li PW, Sutton GG, Nadeau J, Salzberg SL, Holt RA, Kodira CD, Lu F, Chen L, Deng Z, Evangelista CC, Gan W, Heiman TJ, Li J, Li Z, Merkulov GV, Milshina NV, Naik AK, Qi R, Shue BC, Wang A, Wang J, Wang X, Yan X, Ye J, Yooseph S, Zhao Q, Zheng L, Zhu SC, Biddick K, Bolanos R, Delcher AL, Dew IM, Fasulo D, Flanigan MJ, Huson DH, Kravitz SA, Miller JR, Mobarry CM, Reinert K, Remington KA, Zhang Q, Zheng XH, Nusskern DR, Lai Z, Lei Y, Zhong W, Yao A, Guan P, Ji RR, Gu Z, Wang ZY, Zhong F, Xiao C, Chiang CC, Yandell M, Wortman JR, Amanatides PG, Hladun SL, Pratts EC, Johnson JE, Dodson KL, Woodford KJ, Evans CA, Gropman B, Rusch DB, Venter E, Wang M, Smith TJ, Houck JT, Tompkins DE, Haynes C, Jacob D, Chin SH, Allen DR, Dahlke CE, Sanders R, Li K, Liu X, Levitsky AA, Majoros WH, Chen Q, Xia AC, Lopez JR, Donnelly MT, Newman MH, Glodek A, Kraft CL, Nodell M, Ali F, An HJ, Baldwin-Pitts D, Beeson KY, Cai S, Carnes M, Carver A, Caulk PM, Center A, Chen YH, Cheng ML, Coyne MD, Crowder M, Danaher S, Davenport LB, Desilets R, Dietz SM, Doup L, Dullaghan P, Ferriera S, Fosler CR, Gire HC, Gluecksmann A, Gocayne JD, Gray J, Hart B, Haynes J, Hoover J, Howland T, Ibegwam C, Jalali M, Johns D, Kline L, Ma DS, MacCawley S, Magoon A, Mann F, May D, McIntosh TC, Mehta S, Moy L, Moy MC, Murphy BJ, Murphy SD, Nelson KA, Nuri Z, Parker KA, Prudhomme AC, Puri VN, Qureshi H, Raley JC, Reardon MS, Regier MA, Rogers YH, Romblad DL, Schutz J, Scott JL, Scott R, Sitter CD, Smallwood M, Sprague AC, Stewart E, Strong RV, Suh E, Sylvester K, Thomas R, Tint NN, Tsonis C, Wang G, Williams MS, Williams SM, Windsor SM, Wolfe K, Wu MM, Zaveri J, Chaturvedi K, Gabrielian AE, Ke Z, Sun J, Subramanian G, Venter JC, Pfannkoch CM, Barnstead M, Stephenson LD (2002) A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296:1661–1671PubMedGoogle Scholar
  71. Nakagata N (2000) Cryopreservation of mouse spermatozoa mammalian genome. Mamm Genome 11:572–576PubMedGoogle Scholar
  72. Nath AK, Krauthammer M, Li P, Davidov E, Butler LC, Copel J, Katajamaa M, Oresic M, Buhimschi I, Buhimschi C, Snyder M, Madri JA (2009) Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects. PLoS One 4:e4221PubMedGoogle Scholar
  73. Nusbaum C, Slonim DK, Harris KL, Birren BW, Steen RG, Stein LD, Miller J, Dietrich WF, Nahf R, Wang V, Merport O, Castle AB, Husain Z, Farino G, Gray D, Anderson MO, Devine R, Horton LT Jr, Ye W, Wu X, Kouyoumjian V, Zemsteva IS, Wu Y, Collymore AJ, Courtney DF, Tam J, Cadman M, Haynes AR, Heuston C, Marsland T, Southwell A, Trickett P, Strivens MA, Ross MT, Makalowski W, Xu Y, Boguski MS, Carter NP, Denny P, Brown SDM, Hudson TJ, Lander ES (1999) A YAC-based physical map of the mouse genome. Nat Genet 22:388–393PubMedGoogle Scholar
  74. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, Tomaru Y, Hasegawa Y, Nogami A, Schonbach C, Gojobori T, Baldarelli R, Hill DP, Bult C, Hume DA, Quackenbush J, Schriml LM, Kanapin A, Matsuda H, Batalov S, Beisel KW, Blake JA, Bradt D, Brusic V, Chothia C, Corbani LE, Cousins S, Dalla E, Dragani TA, Fletcher CF, Forrest A, Frazer KS, Gaasterland T, Gariboldi M, Gissi C, Godzik A, Gough J, Grimmond S, Gustincich S, Hirokawa N, Jackson IJ, Jarvis ED, Kanai A, Kawaji H, Kawasawa Y, Kedzierski RM, King BL, Konagaya A, Kurochkin IV, Lee Y, Lenhard B, Lyons PA, Maglott DR, Maltais L, Marchionni L, McKenzie L, Miki H, Nagashima T, Numata K, Okido T, Pavan WJ, Pertea G, Pesole G, Petrovsky N, Pillai R, Pontius JU, Qi D, Ramachandran S, Ravasi T, Reed JC, Reed DJ, Reid J, Ring BZ, Ringwald M, Sandelin A, Schneider C, Semple CA, Setou M, Shimada K, Sultana R, Takenaka Y, Taylor MS, Teasdale RD, Tomita M, Verardo R, Wagner L, Wahlestedt C, Wang Y, Watanabe Y, Wells C, Wilming LG, Wynshaw-Boris A, Yanagisawa M, Yang I, Yang L, Yuan Z, Zavolan M, Zhu Y, Zimmer A, Carninci P, Hayatsu N, Hirozane-Kishikawa T, Konno H, Nakamura M, Sakazume N, Sato K, Shiraki T, Waki K, Kawai J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Imotani K, Ishii Y, Itoh M, Kagawa I, Miyazaki A, Sakai K, Sasaki D, Shibata K, Shinagawa A, Yasunishi A, Yoshino M, Waterston R, Lander ES, Rogers J, Birney E, Hayashizaki Y (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573PubMedGoogle Scholar
  75. Olson M (2007) Enrichment of super-sized resequencing targets from the human genome. Nat Methods 4:891–892PubMedGoogle Scholar
  76. Ozsolak F, Milos PM (2010) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98PubMedGoogle Scholar
  77. Papathanasiou P, Perkins AC, Cobb BS, Ferrini R, Sridharan R, Hoyne GF, Nelms KA, Smale ST, Goodnow CC (2003) Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 19:131–144PubMedGoogle Scholar
  78. Philip VM, Sokoloff G, Ackert-Bicknell CL, Striz M, Branstetter L, Beckmann MA, Spence JS, Jackson BL, Galloway LD, Barker P, Wymore AM, Hunsicker PR, Durtschi DC, Shaw GS, Shinpock S, Manly KF, Miller DR, Donohue KD, Culiat CT, Churchill GA, Lariviere WR, Palmer AA, O’Hara BF, Voy BH, Chesler EJ (2011) Genetic analysis in the collaborative cross breeding population. Genome Res 21:1223–1238PubMedGoogle Scholar
  79. Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, Korstanje R, Wang X, Nusskern D, Bogue MA, Mural RJ, Paigen B, Wiltshire T (2004) Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2:e393PubMedGoogle Scholar
  80. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038PubMedGoogle Scholar
  81. Prokai L, Stevens SM, Rauniyar N, Nguyen V (2009) Rapid label-free identification of estrogen-induced differential protein expression in vivo from mouse brain and uterine tissue. J Proteome Res 8:3862–3871PubMedGoogle Scholar
  82. Rhodes M, Straw R, Fernando S, Evans A, Lacey T, Dearlove A, Greystrong J, Walker J, Watson P, Weston P, Kelly M, Taylor D, Gibson K, Mundy C, Bourgade F, Poirier C, Simon D, Brunialti ALB, Montagutelli X, Guenet JL, Haynes A, Brown SDM (1998) A high-resolution microsatellite map of the mouse genome. Genome Res 8:531–542PubMedGoogle Scholar
  83. Rowe LB, Nadeau JH, Turner R, Frankel WN, Letts VA, Eppig JT, Ko MS, Thurston SJ, Birkenmeier EH (1994) Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mamm Genome 5:253–274 [published erratum appears in Mamm Genome 1994 Jul;5(7):463]PubMedGoogle Scholar
  84. Sharpe J, Lettice L, Hecksher-Sorensen J, Fox M, Hill R, Krumlauf R (1999) Identification of sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch. Curr Biol 9:97–S91PubMedGoogle Scholar
  85. Silver LM (1995) Mouse genetics: concepts and applications. Oxford University Press, New YorkGoogle Scholar
  86. Soriano P, Gridley T, Jaenisch R (1987) Retroviruses and insertional mutagenesis in mice: proviral integration at the Mov 34 locus leads to early embryonic death. Genes Dev 1:366–375PubMedGoogle Scholar
  87. Stassen AP, Groot PC, Eppig JT, Demant P (1996) Genetic composition of the recombinant congenic strains. Mamm Genome 7:55–58PubMedGoogle Scholar
  88. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903PubMedGoogle Scholar
  89. Takada T, Mita A, Maeno A, Sakai T, Shitara H, Kikkawa Y, Moriwaki K, Yonekawa H, Shiroishi T (2008) Mouse inter-subspecific consomic strains for genetic dissection of quantitative complex traits. Genome Res 18:500–508PubMedGoogle Scholar
  90. Takahashi H, Liu C, Paul MW, Philippe MS (2010) Chapter 4—archiving and distributing mouse lines by sperm cryopreservation, IVF, and embryo transfer. Methods Enzymol 476:53–69, AcademicPubMedGoogle Scholar
  91. Thakker DR, Natt F, Husken D, van der Putten H, Maier R, Hoyer D, Cryan JF (2005) siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry 10:782–789PubMedGoogle Scholar
  92. Theiler K (1989) The house mouse: atlas of embryonic development. Springer, New YorkGoogle Scholar
  93. Thuan NV, Kishigami S, Wakayama T (2010) How to improve the success rate of mouse cloning technology. J Reprod Dev 56:20–30PubMedGoogle Scholar
  94. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112PubMedGoogle Scholar
  95. VanBuren V, Piao Y, Dudekula DB, Qian Y, Carter MG, Martin PR, Stagg CA, Bassey UC, Aiba K, Hamatani T, Kargul GJ, Luo AG, Kelso J, Hide W, Ko MS (2002) Assembly, verification, and initial annotation of the NIA mouse 7.4 K cDNA clone set. Genome Res 12:1999–2003PubMedGoogle Scholar
  96. Wagner K-D, Wagner N, Schedl A (2003) The complex life of WT1. J Cell Sci 116:1653–1658PubMedGoogle Scholar
  97. Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, Iida N, Hoki Y, Murphy PJ, Toyoda A, Gotoh K, Hiura H, Arima T, Fujiyama A, Sado T, Shibata T, Nakano T, Lin H, Ichiyanagi K, Soloway PD, Sasaki H (2011) Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332:848–852PubMedGoogle Scholar
  98. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562PubMedGoogle Scholar
  99. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876PubMedGoogle Scholar
  100. Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573PubMedGoogle Scholar
  101. Wilming LG, Gilbert JGR, Howe K, Trevanion S, Hubbard T, Harrow JL (2007) The vertebrate genome annotation (Vega) database. Nucl Acids Res 36(Database issue):D753–D760PubMedGoogle Scholar
  102. Wolpert L, Garcia-Bellido A (1998) Debatable issues. Interview by Alain Ghysen. Int J Dev Biol 42:511–518PubMedGoogle Scholar
  103. Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X, Nellaker C, Goodstadt L, Nicod J, Bhomra A, Hernandez-Pliego P, Whitley H, Cleak J, Dutton R, Janowitz D, Mott R, Adams DJ, Flint J (2011) Sequence-based characterization of structural variation in the mouse genome. Nature 477:326–329PubMedGoogle Scholar
  104. Yamamoto M, Wakatsuki T, Hada A, Ryo A (2001) Use of serial analysis of gene expression (SAGE) technology. J Immunol Methods 250:45–66PubMedGoogle Scholar
  105. Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, Schirmacher P, Richard McCombie W, Wigler M, Hicks J, Hannon GJ, Powers S, Lowe SW (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864PubMedGoogle Scholar
  106. Zhai J, Strom AL, Kilty R, Venkatakrishnan P, White J, Everson WV, Smart EJ, Zhu H (2009) Proteomic characterization of lipid raft proteins in amyotrophic lateral sclerosis mouse spinal cord. FEBS J 276:3308–3323PubMedGoogle Scholar
  107. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedGoogle Scholar
  108. Zhou S, Herschleb J, Schwartz DC (2007) A single molecule system for whole genome analysis, chapter 9. In: Mitchelson KR (ed) New high throughput technologies for DNA sequencing and genomics, Perspectives in bioanalysis. Elsevier, Amsterdam, pp 265–300Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Mammalian Genetics UnitMedical Research Council HarwellOxfordshireUK

Personalised recommendations