Modeling Potential Shallow Landslides over Large Areas with SliDisp+

  • Daniel ToblerEmail author
  • Rachel Riner
  • Robert Pfeifer


The deterministic model SliDisp+ calculates the potential detachment zones of shallow landslides. It is a grid-based model using an infinite slope analysis to calculate the safety factors F (ratio of retaining and driving forces) for each cell.

The input data consists of the slope topography, soil strength parameters, depths and shapes of potential shear planes, and the hydraulic behavior. The variables are derived from a digital elevation model (DEM), geological, geotechnical, and pedological documents, or field investigations. From this data the soil is classified over large areas. For each cell, the critical slope angle as well as the soil cohesion is determined.

Studies in several test areas showed that pedological aspects as well as joint water-input from underlying rock must be taken into account. Combined with the run-out model SliDepot, SliDisp+ calculates the extent of potential landslides over large areas and thus can be applied for spatial planning and optimized positioning of protection measures.


Shallow landslide modeling SliDisp+ SliDepot 



We would like to thank Karen Bennett and Nigel Hulbert to improve the manuscript.


  1. AGN (2004) Gefahreneinstufung Rutschungen i.w.S. Permanente Rutschungen, spontane Rutschungen und Hangmuren. Entwurf, BernGoogle Scholar
  2. Agnew JA, Lyon S, Marchant PG, Collins VB, Lembo AJ, Steenhuis TS, Walter MT (2006) Identifying hydrologically sensitive areas: bridging the gap between science and application. J Environ Manage 76:63–76CrossRefGoogle Scholar
  3. Beven KJ, Quinn P, Romanowicz R, Freer J, Fisher J, Lamb R (1995) TOPMODEL and GRIDATB, a user guide to the distribution versions (95.02). CRES Technical Report 110 (2nd edn). Lancaster UniversityGoogle Scholar
  4. Casadei M, Dietrich WE, Miller NL (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf Process Landf 28:925–950CrossRefGoogle Scholar
  5. Chok YH, Kaggwa WS, Jaksa MB, Griffiths DV (2004) Modelling the effects of vegetation on stability of slopes. In: Proceedings of the 9th Australia New Zealand conference on geomechanics, Auckland, vol 1, pp 391–397Google Scholar
  6. Cox JW, Davies PJ (2002) The duration of soil saturation: point measurements versus a catchment-scale method. In: McVicar TR, Li R, Walker Jl, Fitzpatrick RW, Chanming L (eds) Regional water and soil assessment for managing sustainable agriculture in China and Australia. ACIAR monograph 84, pp 224–230Google Scholar
  7. Dahal RK (2008) Predictive modelling of rainfall-induced landslide hazard in the lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102:496–510CrossRefGoogle Scholar
  8. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228CrossRefGoogle Scholar
  9. DeRose RC (1996) Relationships between slope morphology, regolith depth, and the incidence of shallow landslides in eastern Taranaki hill country. Z Geomorphol Suppl. Bd. 105:49–60Google Scholar
  10. GEOTEST AG (2003) Technischer Bericht zur Gefahrenkarte Lauterbrunnen, Nr. 00063.5, Zollikofen (unpublished)Google Scholar
  11. GEOTEST AG (2007) Lauterbrunnen, Rutschung Gryfenbach, Synthese und Prognosen, Report Nr. 94152.26, Zollikofen (unpublished)Google Scholar
  12. GEOTEST AG (2011) Lauterbrunnen, Naturgefahren, Bericht zur Teilrevision Gefahrenkarte, Nr. 10151.01, Zollikofen (unpublished)Google Scholar
  13. Glade T, Anderson M, Crozier MJ (2005) Landslide hazard and risk. Wiley, Chichester, 824 pCrossRefGoogle Scholar
  14. Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modelling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol 102(3–4):214–226CrossRefGoogle Scholar
  15. Griffiths J, Mather AE, Hart AB (2002) Landslide susceptibility in the Rio Aguas catchment, SE Spain. Q J Eng Geol Hydrogeol 35:9–18CrossRefGoogle Scholar
  16. Guimarãres RF, Montgomery DR, Greenberg HM, Fernandes NF, Gomes RA (2003) Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Eng Geol 69:99–108CrossRefGoogle Scholar
  17. Günzler-Seiffert H (1962) Geologischer Atlas der Schweiz 1:25,000, Blatt 6 Lauterbrunnen. Schweizerische Geologische KommissionGoogle Scholar
  18. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184CrossRefGoogle Scholar
  19. Hales TC, Ford CR, Hwang T, Vose JM, Band LE (2009) Topographic and ecologic controls on root reinforcement. J Geophys Res 114:F03013. doi: 10.1029/2008JF001168 CrossRefGoogle Scholar
  20. Hölting B, Enke F (1996) Einführung in die Allgemeine und Angewandte Hydrogeologie, 5th edn. Stuttgart Verlag, StuttgartGoogle Scholar
  21. Kalos MH, Whitlock PA (1986) Monte Carlo methods, vol 1, Basics. Wiley, New YorkCrossRefGoogle Scholar
  22. LaCasse S, Nadim F (1996) Uncertainties in characterising soil properties. Geotechnical Special Publication No. 58, vol 1, pp 49–75Google Scholar
  23. Liener S (2000) Zur Feststofflieferung in Wildbaechen. Dissertation, Geographica Bernensia, BernGoogle Scholar
  24. Liener S, Kienholz H, Liniger M, Krummenacher B (1996) SDLISP – a procedure to locate landslide prone areas. In: Senneneset K (ed) Landslides. Balkema, Rotterdam, pp 279–284Google Scholar
  25. Lineback Gritzner M, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165CrossRefGoogle Scholar
  26. Liniger M (2006) Die Herausforderung der Gefahrenprognose bei Massenbewegungen: Rutsch- und Sturzprozesse. Bull Angew Geol 11(2):75–88Google Scholar
  27. Liu CN, Wu CC (2008) Integrating GIS and stress transfer mechanism in mapping rainfall-triggered landslide susceptibility. Eng Geol 101:60–74CrossRefGoogle Scholar
  28. Lourenco SDN, Sassa K, Fukuoka H (2006) Failure process and hydrologic response of a two layer physical model: implications for rainfall-induced landslides. Geomorphology 73:115–130CrossRefGoogle Scholar
  29. Meisina C, Scarabelli S (2007) A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology 87:207–223CrossRefGoogle Scholar
  30. Paulin GL, Bursik M (2009) Assessment of landslides susceptibility – LOGISNET: a tool for multimethod, multilayer slope stability analysis. VDM Verlag Dr. Müller, SaarbrückenGoogle Scholar
  31. Quinn PF, Beven KJ, Lamb R (1995) The ln(a/tanb) index: how to calculate it and how to use it within the topmodel framework. Hydrol Process 9:161–182CrossRefGoogle Scholar
  32. Rickli Ch (2001) Vegetationswirkungen und Rutschungen. Untersuchung zum Einfluss der Vegetation auf oberflächennahe Rutschprozesse anhand der Unwetterereignisse Sachseln am 15.8.1997. Eidg. Forschungsanstalt (WSL), Birmensdorf, 97pGoogle Scholar
  33. Rickli C, Bucher H, (2003) Oberflächennahe Rutschungen, ausgelöst durch die Unwetter vom 15.–16.7.2002 im Napfgebiet und vom 31.8–1.9.2002 im Gebiet Appenzell. Eidg. Forschungsanstalt (WSL) und Bundesamt für Wasser und Geologie (BWG), 75pGoogle Scholar
  34. Riner R, (2009) Geotechnische Analysen von Lockergesteinen zur Modellierung von Rutschdispositionen im Untersuchungsgebiet Niesen. Masterarbeit Philosophisch-Naturwissenschaftliche Fakultät Universität Bern, 103 p (unpublished)Google Scholar
  35. Salciarini D, Godt JW, Savage WZ, Conversini R, Baum RL, Michael JA (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 3:181–194CrossRefGoogle Scholar
  36. Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can Geotech J 38:995–1024CrossRefGoogle Scholar
  37. Seconi S, Catani F (2008) Modeling soil thickness to enhance slope stability analysis at catchment scale. In: Abstract 33rd international geological congress, Oslo.
  38. Selby MH (1993) Hillslope materials and processes. Oxford University Press, OxfordGoogle Scholar
  39. Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. Water resource monograph 18. American Geophysical Union, Washington, DCGoogle Scholar
  40. Swissmap (2011) Topographic map Lauterbrunnen, Blatt 1228.
  41. Tobler D, Krummenacher B (2004) Modellierung von Anrissgebieten für flachgründige Rutschungen und Hangmuren. In: Proceedings of the 2nd Swiss geoscience meeting, LausanneGoogle Scholar
  42. Tobler D, Riner R, Pfeifer R (2011) Runout modeling of shallow landslides over large areas with SliDepot. In: Proceedings of the second world landslide forum, RomeGoogle Scholar
  43. VSS (1999) SN 670 010b. Bodenkennziffern, ZürichGoogle Scholar
  44. Wakatsuki T, Matsukura Y (2008) Lithological effects in soil formation and soil slips on weathering-limited slopes underlain by granitic bedrocks in Japan, Catena. Trans Jpn Geomorphol Union 72:153–168Google Scholar
  45. Wittke W (1984) Felsmechanik – Grundlagen für wirtschaftliches Bauen im Fels. Springer, Berlin/Heidelberg, 1050 pGoogle Scholar
  46. Yang X, Chapman GA, Young MA, Gray JM (2005) Using compound topographic index to delineate soil landscape facets from digital elevation models for comprehensive coastal assessment. In: “MODSIM” conference, Melbourne, 12–15 Dec 2005Google Scholar
  47. Zolfaghari A, Heath AC (2008) A GIS application for assessing landslide hazard over a large area. Comput Geotech 35:278–285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of GeographyUniversity of BerneBerneSwitzerland
  2. 2.GEOTEST AGZollikofenSwitzerland

Personalised recommendations