Skip to main content

Runout Prediction of Rock Avalanches in Volcanic and Glacial Terrains

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

Among all kinds of landslides, rock avalanches are characterized by exceptional mobility and destructiveness. Their mobility is well larger than explained by the real material properties and it is usually expressed by means of an “apparent” friction angle which is a-priori unpredictable. We replicate the motion of historical rock/debris avalanches evolved in glacial and volcanic environments. The modelled events involved variable volumes (ranging from millions of m3 to km3) which are well preserved so that their main features are recognizable from satellite images. Within each class of events, and irrespective of the variety of conditions in which they occurred, the best fitting parameters span in a narrow interval. The bulk basal friction angle ranges within 3° and 7.5° for volcanic debris avalanches, within 6° and 12° for ice-rock avalanches. These values are significantly lower than other rock avalanches which require values as high as 11° to 31°. The consistency of the back-analyzed parameters is encouraging for a possible use of the model in the perspective of hazard mapping while set of calibrated values can help the selection of model input parameter values for prediction and for definition of uncertainty on zonation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguila LG, Newhall CG, Miller CD, Listanco EL (1986) Reconnaissance geology of a large debris avalanche from Iriga volcano, Philippines. Philippine J Volcanol 3:54–72

    Google Scholar 

  • Chen H, Lee CF (2000) Numerical simulation of debris flows. Can Geotech J 37(1):146–160

    Article  Google Scholar 

  • Crandell DR, Miller CD, Glicken HX, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche from ancestral Mount Shasta volcano, California. Geology 12:143–146

    Article  Google Scholar 

  • Delaney KB, Evans SG (2008) Application of digital cartographic techniques in the characterization and analysis of catastrophic landslides; The 1997 Mount Munday rock avalanche, British Columbia. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (eds) Proceedings of the 4th Canadian conference on geohazards: from causes to management. Presse de l’Université Laval, Québec, pp 141–146

    Google Scholar 

  • Evans SG, Clague JJ (1988) Catastrophic rock avalanches in glacial environments. Proc V Int Symp Landslides 2:1153–1158

    Google Scholar 

  • Glicken H (1996) Rockslide-debris Avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. U S Geol Surv Open-File Report, 96–677

    Google Scholar 

  • Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geoph Res 97:9063–9071

    Article  Google Scholar 

  • Hewitt K (1999) Quaternary Moraines vs Catastrophic rock avalanches in the Karakoram Himalaya, Northern Pakistan. Quaternary Res 51(3):220–237

    Article  Google Scholar 

  • Huggel C, Caplan-Auerbach J, Waythomas CF, Wessels RL (2007) Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: a case study of frequent large avalanches on Iliamna Volcano, Alaska. J Volc Geoth Res 168(1–4):114–136

    Article  Google Scholar 

  • Huggel C, Schneider D, Julio Miranda P, Delgado Granados H, Kääb A (2008) Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocatepetl Volcano, Mexico. J Volc Geoth Res 170:99–110

    Article  Google Scholar 

  • Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Senneset (ed) Proceedings, 7th international symposium on landslides, Trondheim, 1, pp 233–238

    Google Scholar 

  • Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160

    Article  Google Scholar 

  • Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110:B12202.1–12202

    Article  Google Scholar 

  • McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. Ph.D. thesis, University of British Columbia, Vancouver

    Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097

    Article  Google Scholar 

  • Ponomareva VV, Pevzner MM, Melekestsev IV (1998) Large debris avalanches and associated eruptions in the Holocene eruptive history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 59(7):490–505

    Article  Google Scholar 

  • Post A (1967) Effects of the March 1964 Alaska earthquake on glaciers, vol 554-D, U. S. Geological Survey Professional Paper. U.S. Govt. Print. Off, Washington, DC, p 42

    Google Scholar 

  • Richards JP, Villeneuve M (2001) The Llullaillaco volcano, northwestern Argentina: construction by Pleistocene volcanism and destruction by edifice collapse. J Volcanol Geotherm Res 105:77–105

    Article  Google Scholar 

  • Shreve RL (1966) Sherman landslide, Alaska. Science 154(3757):1639–1643

    Article  Google Scholar 

  • Siebert L (2002) Landslides resulting from structural failure of volcanoes. In: Evans SG, De Graff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms, vol 15, Geological society of America, reviews in engineering geology. Geological Society of America, Boulder, CO, pp 209–235

    Chapter  Google Scholar 

  • Vallance JW, Siebert L, Rose WI, Girón J, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geotherm Res 66:337–355

    Article  Google Scholar 

  • van Wyk de Vries B, Francis PW (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387:387–390

    Article  Google Scholar 

  • Voight B, Elsworth D (1997) Failure of volcano slopes. Géotechnique 47(1):1–31

    Article  Google Scholar 

  • Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Geotechnique 33:224–273

    Google Scholar 

  • Wadge G, Francis PW, Ramirez CF (1995) The Socompa collapse and avalanche event. J Volc Geoth Res 66:309–336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanna Sosio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sosio, R., Crosta, G.B., Chen, J.H., Hungr, O. (2013). Runout Prediction of Rock Avalanches in Volcanic and Glacial Terrains. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_38

Download citation

Publish with us

Policies and ethics