DEM and FEM/DEM Modelling of Granular Flows to Investigate Large Debris Avalanche Propagation



Large debris avalanches are characterized by extremely rapid, flow-like motion of large masses and they travel extremely long distances showing much greater mobility than could be predicted using frictional models. In order to investigate the mechanisms involved and the reasons for the large propagation of these phenomena a discrete element model (DEM) and a combined finite and discrete element one (FEM/DEM) are used to simulate small-scale laboratory experiments carried out by Manzella “Manzella and Labiouse (Rock Mech Rock Eng 41(1):133–151, 2008, Eng Geol 109(1–2):146–158, 2009, Landslides, 2011 submitted); Manzella (Dry rock avalanche propagation: unconstrained flow experiments with granular materials and blocks at small scale. Ph.D. n 4032, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH, 2008)”. The combined use of different models produces a more complete study of the phenomena since each model can fill certain gaps of the other; they also help in a better understanding of some mechanisms and factors, which are important in the longitudinal propagation of granular and block flows, such as the progressive failure, the initial block packing and the topographical characteristics of the slope break.


Large debris avalanches Granular flows Block flows Runout DEM FEM/DEM 



Dr. Manzella would like to thank “Fondation Ernst and Lucie Schmidheiny” for funding and Professor John Williams and Professor Costanza Bonadonna for fruitful discussions. Dr. Grasselli’s work has been supported by the National Science and Engineering Research Council of Canada in the form of Discovery Grant No. 341275.


  1. Bagnold RA (1954) Experiments on a gravity free dispersion of large solid spheres in Newtonian fluid under shear. Proc R Soc Lond Ser A Math Phys Sci 225:49–63CrossRefGoogle Scholar
  2. Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech Felsmechanik Mécanique des Roches 15(1):9–24CrossRefGoogle Scholar
  3. Drake TG (1990) Structural features in granular flows. J Geophys Res 95(B6):8681–8696CrossRefGoogle Scholar
  4. Drake TG (1991) Granular flow – physical experiments and their implications for microstructural theories. J Fluid Mech 225:121–152CrossRefGoogle Scholar
  5. Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes – the 1991 Randa rockslide. Int J Rock Mech Min Sci 41(1):69–87CrossRefGoogle Scholar
  6. Einstein HH, Sousa RL, Karam K, Manzella I, Kveldsvik V (2010) Rock slopes from mechanics to decision making. In: Zhao J, Labiouse V, Dudt J-P, Mathier J-F (eds) Rock mechanics in civil and environmental engineering. CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  7. Evans SG, Roberts NJ, Ischuk A, Delaney KB, Morozova GS, Tutubalina O (2009) Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Eng Geol 109(3–4):195–212. doi: 10.1016/j.enggeo.2009.08.007 CrossRefGoogle Scholar
  8. Friedmann SJ, Taberlet N, Losert W (2006) Rock-avalanche dynamics: insights from granular physics experiments. Int J Earth Sci 95:911–919. doi: 10.1007/s00531-006-0067-9 CrossRefGoogle Scholar
  9. Heim A (1932) Bergsturz und menschenleben. Frets und Wasmuth, Zurich, 218pGoogle Scholar
  10. Hsü KJ (1975) Catastrophic debris streams generated by rockfalls. Geol Soc Am Bull 86(1):129–140CrossRefGoogle Scholar
  11. Hungr O (2009) Numerical modelling of the motion of rapid, flow-like landslides for hazard assessment. KSCE J Civil Eng 13(4):281–287CrossRefGoogle Scholar
  12. Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238Google Scholar
  13. Kelfoun K, Druitt T, van Wyk de Vries B, Guilbaud M-N (2008) Topographic reflection of the Socompa debris avalanche, Chile. Bull Volcanol 70:1169–1187. doi: 10.1007/s00445-008-0201-6 CrossRefGoogle Scholar
  14. Mahabadi OK, Grasselli G, Munjiza A (2010a) Y-GUI: a graphical user interface and pre-processor for the combined finite-discrete element code, Y2D, incorporating material heterogeneity. Comput Geosci 36(2):241–252. doi: 10.1016/j.cageo.2009.05.010 CrossRefGoogle Scholar
  15. Mahabadi OK, Lisjak A, Grasselli G, Lukas T, Munjiza A (2010b) Numerical modelling of a triaxial test of homogeneous rocks using the combined finite-discrete element method. In: Zhao J, Labiouse V, Dudt J-P, Mathier J-F (eds) Rock mechanics in civil and environmental engineering. CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  16. Manzella I (2008) Dry rock avalanche propagation: unconstrained flow experiments with granular materials and blocks at small scale. Ph.D n°4032, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CHGoogle Scholar
  17. Manzella I, Labiouse V (2008) Qualitative analysis of rock avalanches propagation by means of physical modelling of non-constrained gravel flows. Rock Mech Rock Eng 41(1):133–151CrossRefGoogle Scholar
  18. Manzella I, Labiouse V (2009) Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Eng Geol 109(1–2):146–158. doi: 10.1016/j.enggeo.2008.11.006 CrossRefGoogle Scholar
  19. Manzella I, Labiouse V (2011) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides (submitted)Google Scholar
  20. Manzella I, Pirulli M, Naaim M, Serratrice JF, Labiouse V (2008) Numerical modelling of a rock avalanche laboratory experiment in the framework of the “Rockslidetec” alpine project. In: Proceedings of the symposium on landslides and engineered slopes: from the past to the future, vol 1. Xi’an, China. CRC Press/Taylor & Francis, Boca Rato, pp 835–841Google Scholar
  21. Manzella I, Lisjak A, Mahabadi OK, Grasselli G (2011) Influence of initial block packing on rock avalanche flow and emplacement mechanisms through FEM/DEM simulations. Paper presented at the 2011 PanAm-CGS geotechnical conference, Toronto, 2–6 Oct 2011Google Scholar
  22. Munjiza A (2004) The combined finite-discrete element method. Wiley. doi: 10.1002/0470020180.333p
  23. Munjiza A, Andrews KRF (2000) Penalty function method for combined finite-discrete element systems comprising large number of separate bodies. Int J Numer Methods Eng 49(11):1377–1396CrossRefGoogle Scholar
  24. Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12(2):145–174CrossRefGoogle Scholar
  25. Naaim M, Vial S, Couture R (1997) Saint Venant approach for rock avalanches modelling. In: Multiple scale analyses and coupled physical systems: Saint Venant symposium. Presses de l’École Nationale des Ponts et chaussées, ParisGoogle Scholar
  26. Pirulli M, Mangeney A (2008) Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech Rock Eng 41(1):59–84. doi: 10.1007/s00603-007-0143-x CrossRefGoogle Scholar
  27. Schindler C, Cuenod Y, Eisenlohr T, Joris CL (1993) The events of Randa, April 18th and May 19th 1991 – an uncommon type of rockfall. Die Ereignisse vom 18. April und 9. Mai 1991 bei Randa (VS) – ein atypischer Bergsturz in Raten Eclogae Geologicae Helvetiae 86(3):643–665Google Scholar
  28. Van Gassen W, Cruden DM (1989) Momentum transfer and friction in the debris of rock avalanches. Can Geotech J 26(4):623–628. doi: 10.1139/t89-075 CrossRefGoogle Scholar
  29. Williams JR, O’connor R (1995) A linear complexity intersection algorithm for discrete element simulation of arbitrary geometries. Eng Comput 12(2):185–201CrossRefGoogle Scholar
  30. Williams JR, O’Connor R (1999) Discrete element simulation and the contact problem. Arch Comput Methods Eng 6(4):279–304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Section de Sciences de la Terre et de l’environnementUniversity of GenevaGenèveSwitzerland
  2. 2.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Geomechanics Group, Department of Civil EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations