Quality-Based Fingerprint Segmentation

  • Ntethelelo A. Mngenge
  • Fulufhelo V. Nelwamondo
  • Tendani Malumedzha
  • Ntsika Msimang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

The need for segmentation of low quality fingerprints in forensics, high security and civilian applications is constantly increasing. Most segmentation algorithms proposed in the literature normally deal with separation of the background from the foreground. However, low quality foreground regions must also be removed to lower errors in feature extraction, matching and decision modules. In this research work, a quality based fingerprint segmentation algorithm is proposed. The proposed algorithm is block-wise, it utilizes the auto-correlation matrix of gradients and its eigenvalue to compute the score quality measure of each block. The score quality measures both local contrast and orientation in each block. The threshold is computed by taking the mean for all the scores assigned to each block. It was evaluated on FVC 2002 and NIST High Resolution 27A databases. Its performance compared to other algorithms was evaluated by independent fingerprint quality measure algorithm. The results from both FVC and NIST databases show that the proposed algorithm results are promising.

Keywords

Eigenvalues Auto-correlation Local Contrast Local Orientation Gradients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akram, M.U., Nasir, S., Tariq, A., Zafar, I., Khan, W.S.: Improved fingerprint image segmentation using new modified gradient based technique. In: Canadian Conference on Electrical and Computer Engineering, p. 001967 (2008)Google Scholar
  2. 2.
    Alonso-Fernandez, F., Fierrez-Aguilar, J., Ortega-Garcia, J.: An enhanced Gabor filter-based segmentation algorithm for fingerprint recognition systems. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, p. 239 (2005)Google Scholar
  3. 3.
    Bazen, A.M., Gerez, S.H.: Segmentation of fingerprint images. In: ProRISC Workshop on Circuits, Systems and Signal Processing, pp. 276–280 (2001)Google Scholar
  4. 4.
    Bazen, A.M., Gerez, S.H.: Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 905–919 (2002)CrossRefGoogle Scholar
  5. 5.
    Biometrics Assurance Group , Fingerprints may fail elderly, warn experts [Homepage of BAG] (July 2011), http://www.kablenet.com/kd.nsf/FrontpageRSS/
  6. 6.
    CDEFFS, Extended Fingerprint Feature Set, CDEFFS (2005)Google Scholar
  7. 7.
    Chen, X., Tian, J., Cheng, J., Yang, X.: Segmentation of fingerprint images using linear classifier. EURASIP J. Appl. Signal Process., 480–494 (2004)Google Scholar
  8. 8.
    Chunxiao, R., Yilong, Y., Jun, M., Gongping, Y.: A Linear Hybrid Classifier for Fingerprint Segmentation. In: Fourth International Conference on Natural Computation, ICNC 2008, p. 33 (2008)Google Scholar
  9. 9.
    Drahansk, M., Bezinov, E., Lodrov, D., Orsg, F.: Fingerprint Recognition Influenced by Skin Diseases. International Journal of Bio-Science and Bio-Technology 03, 11–22 (2010)Google Scholar
  10. 10.
    Guo, X., Yin, Y., Shi, Z.: Personalized Fingerprint Segmentation. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. LNCS, vol. 5863, pp. 798–809. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Helfroush, M.S., Mohammadpour, M.: Figerprint Segmentation. In: 3rd International Conference on Information and Communication Technologies: From Theory to Applications, p. 1 (2008)Google Scholar
  12. 12.
    Institute of Electrical and Electronics Engineers (IEEE), 1 Module 3 Biometric System Design and Evaluation in Certified Biometrics Professional (CBP) IEEE, pp. 3–9 (2011)Google Scholar
  13. 13.
    Klein, S., Bazen, A.M., Veldhuis, R.N.J.: Fingerprint segmentation based on hidden Markov models. In: 13th Annual Workshop on Circuits Systems and Signal Processing (ProRISC), pp. 310–318 (2002)Google Scholar
  14. 14.
    Lin, H., Yifei, W., Jain, A.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 777–789 (1998)CrossRefGoogle Scholar
  15. 15.
    Mehtre, B.M., Chatterjee, B.: Segmentation of fingerprint images A composite method. Pattern Recognition 22(4), 381–385 (1989); Mehtre, B.M., Murthy, N.N., Kapoor, S., Chatterjee, B.: Segmentation of fingerprint images using the directional image. Pattern Recognition  20(4), 429–435 (1987)CrossRefGoogle Scholar
  16. 16.
    Msiza, I.S., Mathekga, M.E., Marwala, T., Nelwamondo, F.V.: Fingerprint segmentation: An investigation of various techniques and a parameter study of a variance-based method. International Journal of Innovative Computing, Information, and Control (IJICIC) 7, 5313–5326 (2011)Google Scholar
  17. 17.
    Pais Barreto Marques, A.C., Gay Thome, A.C.: A neural network fingerprint segmentation method. In: Fifth International Conference on Hybrid Intelligent Systems, p. 6 (2005)Google Scholar
  18. 18.
    Yin, J., Zhu, E., Yang, X., Zhang, G., Hu, C.: Two steps for fingerprint segmentation. Image and Vision Computing 25, 1391–1403 (2007)CrossRefGoogle Scholar
  19. 19.
    Zhu, E., Yin, J., Hu, C., Zhang, G.: A systematic method for fingerprint ridge orientation estimation and image segmentation. Pattern Recognition 39(8), 1452–1472 (2006)MATHCrossRefGoogle Scholar
  20. 20.
    Jain, A.K., Feng, J.: Latent Fingerprint Matching. IEEE Trans. Pattern Anal. Mach. Intell. 33, 88–100 (2006)CrossRefGoogle Scholar
  21. 21.
    Mehtre, B.M., Chatterjee, B.: Segmentation of fingerprint images a composite method. Pattern Recogn. 22, 381–385 (1989)CrossRefGoogle Scholar
  22. 22.
    Yu, C., Xie, M., Qi, J.: An effective algorithm for low quality fingerprint segmentation. In: 3rd International Conference on Intelligent System and Knowledge Engineering, vol. 1, pp. 1081–1085 (2008)Google Scholar
  23. 23.
    Jain, A.K., Maltoni, D.: Handbook of Fingerprint Recognition. Springer-Verlag New York, Inc. (2003)Google Scholar
  24. 24.
    Shi, Z., Yangsheng Wang, Y., Jin Qi, J., Xu, K.: A new segmentation algorithm for low quality fingerprint image. In: Proceedings of Third International Conference on Image and Graphics, pp. 314–317 (2004)Google Scholar
  25. 25.
    Fronthaler, H., Kollreider, K., Bigun, J., Fierrez, J.: Fingerprint Image Quality Estimation and its Application to Multi-Algorithm Verification. IEEE Trans. (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ntethelelo A. Mngenge
    • 1
  • Fulufhelo V. Nelwamondo
    • 2
  • Tendani Malumedzha
    • 2
  • Ntsika Msimang
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of JohnnesburgRSA
  2. 2.Council for Scientific and Industrial Research (CSIR)South Africa

Personalised recommendations