Advertisement

Supervised Content Based Image Retrieval Using Radiology Reports

  • José Ramos
  • Thessa Kockelkorn
  • Bram van Ginneken
  • Max A. Viergever
  • Rui Ramos
  • Aurélio Campilho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

Content based image retrieval (CBIR) is employed in medicine to improve radiologists’ diagnostic performance. Today effective medical CBIR systems are limited to specific applications, as to reduce the amount of medical knowledge to model. Although supervised approaches could ease the incorporation of medical expertise, its application is not common due to the scarce number of available user annotations. This paper introduces the application of radiology reports to supervise CBIR systems. The concept is to make use of the textual distances between reports to build a transformation in image space through a manifold learning algorithm. A comparison was made between the presented approach and non-supervised CBIR systems, using a Leave-One-Patient-Out evaluation in a database of computer tomography scans of interstitial lung diseases. Supervised CBIR augmented the mean average precision consistently with an increase between 3 to 8 points, which suggests supervision by radiology reports increases CBIR performance.

Keywords

Interstitial Lung Disease Image Space Radiology Report Mean Average Precision Manifold Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aisen, A.M., Broderick, L.S., Winer-Muram, H., Brodley, C.E., Kak, A.C., Pavlopoulou, C., Dy, J., Shyu, C., Marchiori, A.: Automated storage and retrieval of thin-section CT images to assist diagnosis: system description and preliminary assessment. Radiology 228(1), 265–270 (2003)CrossRefGoogle Scholar
  2. 2.
    Akgul, C.B., Rubin, D.L., Napel, S., Beaulieu, C.F., Greenspan, H., Acar, B.: Content-Based image retrieval in radiology: Current status and future directions. Journal of Digital Imaging 24(2), 208–222 (2010)CrossRefGoogle Scholar
  3. 3.
    Dreyer, K.J., Kalra, M.K., Maher, M.M., Hurier, A.M., Asfaw, B.A., Schultz, T., Halpern, E.F., Thrall, J.H.: Application of recently developed computer algorithm for automatic classification of unstructured radiology reports: Validation study1. Radiology 234(2), 323–329 (2005)CrossRefGoogle Scholar
  4. 4.
    Hersh, W.R., Mülller, H., Jensen, J.R., Yang, J., Gorman, P.N., Ruch, P.: Advancing biomedical image retrieval: development and analysis of a test collection. Journal of the American Medical Informatics Association: JAMIA 13(5), 488–496 (2006)CrossRefGoogle Scholar
  5. 5.
    Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. SIGIR Forum 37(2), 18–28 (2003)CrossRefGoogle Scholar
  6. 6.
    Kockelkorn, T.T.J.P., de Jong, P.A., Gietema, H.A., Grutters, J.C., Prokop, M., van Ginneken, B.: Interactive annotation of textures in thoracic CT scans. In: Proceedings of SPIE, vol. 7624(1), 76240X–76240X-8 (March 2010)Google Scholar
  7. 7.
    Li, Q., Li, F., Shiraishi, J., Katsuragawa, S., Sone, S., Doi, K.: Investigation of new psychophysical measures for evaluation of similar images on thoracic computed tomography for distinction between benign and malignant nodules. Medical Physics 30(10), 2584–2593 (2003)CrossRefGoogle Scholar
  8. 8.
    van Rikxoort, E.M., de Hoop, B., van de Vorst, S., Prokop, M., van Ginneken, B.: Automatic segmentation of pulmonary segments from volumetric chest CT scans. IEEE Transactions on Medical Imaging 28(4), 621–630 (2009)CrossRefGoogle Scholar
  9. 9.
    Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers C-18(5), 401–409 (1969)CrossRefGoogle Scholar
  10. 10.
    Slaney, M., Weinberger, K., White, W.: Learning a metric for music similarity. In: Procedings of the 9th International Society for Music Information Retrieval Conference, pp. 313–318 (2008)Google Scholar
  11. 11.
    Sluimer, I.C., Prokop, M., Hartmann, I., van Ginneken, B.: Automated classification of hyperlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution CT of the lung. Medical Physics 33(7), 2610 (2006)CrossRefGoogle Scholar
  12. 12.
    Yang, L., Jin, R., Mummert, L., Sukthankar, R., Goode, A., Zheng, B., Hoi, S.C., Satyanarayanan, M.: A boosting framework for Visuality-Preserving distance metric learning and its application to medical image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 30–44 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • José Ramos
    • 1
    • 2
  • Thessa Kockelkorn
    • 2
  • Bram van Ginneken
    • 3
  • Max A. Viergever
    • 2
  • Rui Ramos
    • 1
  • Aurélio Campilho
    • 1
  1. 1.INEB - Instituto de Engenharia Biomédica, Faculdade de Engenharia daUniversidade do PortoPortugal
  2. 2.Image Sciences InstituteUMC UtrechtThe Netherlands
  3. 3.Diagnostic Image Analysis Group, Department of RadiologyRadboud University Nijmegen Medical CentreThe Netherlands

Personalised recommendations