Clustering through SOM Consistency

  • Nicolau Gonçalves
  • Ricardo Vigário
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7324)


Clustering is a classical tool in image analysis, with wide applications. Yet, most of its algorithmic solutions include a considerable amount of stochasticity, e.g. due to different initialisations. Here, we introduce a clustering method rooted on self organizing maps, that exploits the maps’ intrinsic variability, to produce reliable clustering. Although only a subset of the data is consistently clustered, we show that this set is trustworthy, and can be used for posterior classification.


Grey Matter Ground Truth Multiple Sclerosis Lesion Grand Challenge Competitive Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahalt, S., Krishnamurthy, A., Chen, P., Melton, D.: Competitive learning algorithms for vector quantization. Neural Networks 3(3), 277–290 (1989)CrossRefGoogle Scholar
  2. 2.
    Alhoniemi, E., Himberg, J., Parhankangas, J., Vesantoen, J.: SOM Toolbox, (visited October 2011)
  3. 3.
    Cocosco, C., Kollokian, V., Kwan, R.S., Evans, A.: BrainWeb: Online interface to a 3D MRI simulated brain database. In: NeuroImage (Proceedings of 3rd International Conference on Functional Mapping of the Human Brain), Copenhagen, vol. 5(4, part2/4), p. S425 (May 1997),
  4. 4.
    Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998)CrossRefGoogle Scholar
  5. 5.
    Gonçalves, N., Nikkilä, J., Vigário, R.: Partial Clustering for Tissue Segmentation in MRI. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5507, pp. 559–566. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer (2001), Huang, T.S., Kohonen, T., Schroeder, M.R. (eds.)Google Scholar
  7. 7.
    Laaksonen, J., Honkela, T. (eds.): WSOM 2011. LNCS, vol. 6731. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  8. 8.
    MacKay, D.J.C.: Information Theory, Inference & Learning Algorithms, 1st edn. Cambridge University Press (2002)Google Scholar
  9. 9.
    McLachlan, G.J., Basford, K.E.: Chapters 1 and 2. In: McLachlan, Basford (eds.) Mixture Models: Inference and Applications to Clustering, pp. 1–69. Marcel Dekker, Inc. (1988)Google Scholar
  10. 10.
    Styner, M., Lee, J., Chin, B., Chin, M., Commowick, O., Tran, H., Markovic-Plese, S., Jewells, V., Warfield, S.: 3D segmentation in the clinic: A grand challenge II: MS lesion segmentation. In: MICCAI 2008 Workshop, MIDAS Journal (September 2008),
  11. 11.
    Vesanto, J., Alhoniemi, E.: Clustering of the Self-Organizing Map. IEEE Neural Networks 11(3), 586 (2000)CrossRefGoogle Scholar
  12. 12.
    Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 1073–1080. ACM, New York (2009)Google Scholar
  13. 13.
    Ylipaavalniemi, J., Vigário, R.: Analyzing consistency of independent components: An fMRI illustration. NeuroImage 39(1), 169–180 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicolau Gonçalves
    • 1
  • Ricardo Vigário
    • 1
  1. 1.Department of Information and Computer ScienceAalto University School of ScienceAaltoFinland

Personalised recommendations