Advertisement

Shape Reconstruction from an Unorganized Point Cloud with Outliers

  • Yvan Maillot
  • Benoît Presles
  • Johan Debayle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7324)

Abstract

This paper deals with the problem of shape reconstruction from an unorganized and not necessarily uniformly distributed point cloud with outliers. A shape reconstruction method based on a Delaunay filtration called LDA-α-shapes has been introduced in 2010 [1]. This method may be used to reconstruct 2-D or 3-D shapes from a non necessary uniformly distributed point cloud but unfortunately it faces problems when there are outliers. For this reason, a little modification of the LDA-α-shapes definition is proposed in this article to deal with this kind of point clouds. The resulting new algorithm is still simple and efficient.

Keywords

Point Cloud Computational Geometry Surface Reconstruction Neighbourhood Level Automatic Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maillot, Y., Adam, B., Melkemi, M.: Shape Reconstruction from Unorganized Set of Points. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010, Part I. LNCS, vol. 6111, pp. 274–283. Springer, Heidelberg (2010) 10.1007/978-3-642-13772-3_28CrossRefGoogle Scholar
  2. 2.
    Amenta, N., Bern, M.: Surface reconstruction by voronoi filtering. Discrete and Computational Geometry 22, 481–504 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Amenta, N., Choi, S., Dey, T., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. In: ACM Symposium on Computational Geometry, pp. 213–222 (2000)Google Scholar
  4. 4.
    Edelsbrunner, H.: The union of balls and its dual shape. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, SCG 1993, pp. 218–231. ACM, New York (1993)CrossRefGoogle Scholar
  5. 5.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: SMA 2001: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 249–266. ACM, New York (2001)CrossRefGoogle Scholar
  6. 6.
    Dey, T.K., Goswami, S.: Provable surface reconstruction from noisy samples. Comput. Geom. Theory Appl. 35(1), 124–141 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory 29(4), 551–559 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chevallier, N., Maillot, Y.: Boundary of a non-uniform point cloud for reconstruction: Extended abstract. In: Symposium on Computational Geometry, pp. 510–518 (2011)Google Scholar
  9. 9.
    Goodman, J.E., O’Rourke, J. (eds.): Handbook of discrete and computational geometry. CRC Press, Inc., Boca Raton (1997)zbMATHGoogle Scholar
  10. 10.
    Presles, B., Debayle, J., Maillot, Y., Pinoli, J.-C.: Automatic Recognition of 2D Shapes from a Set of Points. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011, Part I. LNCS, vol. 6753, pp. 183–192. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yvan Maillot
    • 1
  • Benoît Presles
    • 2
  • Johan Debayle
    • 2
  1. 1.Faculty of Science and TechnologyUniversity of Haute AlsaceMulhouseFrance
  2. 2.École Nationale Supérieure des Mines de Saint-Étienne, CIS-SPIN-LPMG/CNRSSaint-Étienne cedex 2France

Personalised recommendations