Advertisement

A Mixture of Experts Approach to Multi-strategy Image Quality Assessment

  • Peng Peng
  • Ze-Nian Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7324)

Abstract

The success of some recently proposed multi-strategy image quality metrics supports the hypothesis that the Human Visual System (HVS) uses multiple strategies when assessing image quality, where the effect from each strategy on the final quality prediction is conditioned on the quality level of the test image. To date, how to optimally combine multiple strategies into a final quality prediction remains an unsolved problem, especially when more than two strategies are involved. In this paper, we present a data-driven combination method based on a conditional Bayesian Mixture of Experts (BME) model. This method provides an effective way to model the interaction of a flexible number of strategies. Extensive evaluation on three publicly-available image quality databases demonstrates the potential of our method.

Keywords

Image quality assessment multi-strategy approach Bayesian mixture of experts (BME) support vector regression (SVR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larson, E.C., Chandler, D.M.: Most Apparent Distortion: Full-Reference Image Quality Assessment and the Role of Strategy. J. Electron. Imaging 19(1), 11006 (2010)CrossRefGoogle Scholar
  2. 2.
    Peng, P., Li, Z.N.: Incorporating Structural Edge Quality to Regularize the Structural Similarity Index (submitted for publication)Google Scholar
  3. 3.
    Jordan, M.I., Jacobs, R.A.: Hierarchical Mixtures of Experts and the EM Algorithm. Neural Computation, 181–214 (1994)Google Scholar
  4. 4.
    Bishop, C.M., Svensén, M.: Bayesian Hierarchical Mixtures of Experts. In: Nineteenth Conference on Uncertainty in Artificial Intelligence, pp. 57–64 (2003)Google Scholar
  5. 5.
    Sminchisescu, C., Kanaujia, A., Metaxas, D.N.: BME : Discriminative Density Propagation for Visual Tracking. IEEE Trans. Pattern Anal. Mach. Intell., 2030–2044 (2007)Google Scholar
  6. 6.
    Bo, L., Sminchisescu, C., Kanaujia, A., Metaxas, D.N.: Fast Algorithms for Large Scale Conditional 3D Prediction. In: CVPR(2008)Google Scholar
  7. 7.
    Mossavat, S.I., Amft, O., de Vries, B., Petkov, P.N., Kleijn, W.B.: A Bayesian Hierarchical Mixture of Experts Approach to Estimate Speech Quality. In: Second International Workshop on Quality of Multimedia Experience (QoMEX) (2010)Google Scholar
  8. 8.
    Chang, C.W., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. ACM Trans. on Intell. Syst. Technol. 2(3), 27 (2011), software http://www.csie.ntu.edu.tw/~cjlin/libsvm Google Scholar
  9. 9.
    Ponomarenko, N., Battisti, F., Egiazarian, K., Astola, J., Lukin, V.: Metrics Performance Comparison for Color Image Database. In 4th International Workshop on Video Processing and Quality Metrics for Consumer Electronics, Scottsdale (2009)Google Scholar
  10. 10.
    Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID 2008 - A Database for Evaluation of Full-Reference Visual Quality Assessment Metrics. Advances of Modern Radioelectronics 10, 30–45 (2009)Google Scholar
  11. 11.
    Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE Image Quality Assessment Database Release 2, http://live.ece.utexas.edu/research/quality
  12. 12.
    Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)CrossRefGoogle Scholar
  13. 13.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: From Error Measurement to Structural Similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  14. 14.
    Sheikh, H.R., Bovik, A.C.: Image Information and Visual Quality. IEEE Trans. Image Process. 15(2), 43–444 (2006)CrossRefGoogle Scholar
  15. 15.
    Lin, W., Kuo, C.C.J.: Perceptual Visual Quality Metrics: A Survey. Journal of Visual Communication and Image Representation 22(4), 297–312 (2011)CrossRefGoogle Scholar
  16. 16.
    Moorthy, A.K., Bovik, A.C.: Visual Quality Assessment Algorithms: What Does The Future Hold? Multimedia Tools Appl. 51(2), 675–696 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peng Peng
    • 1
  • Ze-Nian Li
    • 1
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations