A General Construction for 1-Round δ-RMT and (0, δ)-SMT

  • Reihaneh Safavi-Naini
  • Mohammed Ashraful Alam Tuhin
  • Pengwei Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7341)


In Secure Message Transmission (SMT) problem, a sender \(\cal S\) is connected to a receiver \(\cal R\) through N node disjoint bidirectional paths in the network, t of which are controlled by an adversary with unlimited computational power. \(\cal{S}\) wants to send a message m to \(\cal{R}\) in a reliable and private way. It is proved that SMT is possible if and only if N ≥ 2t + 1. In Reliable Message Transmission (RMT) problem, the network setting is the same and the goal is to provide reliability for communication, only. In this paper we focus on 1-round δ-RMT and (0,δ)-SMT where the chance of protocol failure (receiver cannot decode the sent message) is at most δ, and in the case of SMT, privacy is perfect.

We propose a new approach to the construction of 1-round δ-RMT and (0, δ)-SMT for all connectivities N ≥ 2t + 1, using list decodable codes and message authentication codes. Our concrete constructions use folded Reed-Solomon codes and multireceiver message authentication codes. The protocols have optimal transmission rates and provide the highest reliability among all known comparable protocols. Important advantages of these constructions are, (i) they can be adapted to all connectivities, and (ii) have simple and direct security (privacy and reliability) proofs using properties of the underlying codes, and δ can be calculated from parameters of the underlying codes.

We discuss our results in relation to previous work in this area and propose directions for future research.


Secret Sharing General Construction Message Authentication Code Message Block Information Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-cryptographic Fault-tolerant Distributed Computation (extended abstract). In: Proc. of STOC, pp. 1–10 (1988)Google Scholar
  2. 2.
    Chaum, D., Crepeau, C., Damgard, I.: Multiparty Unconditionally Secure Protocols (Extended Abstract). In: Proc. of FOCS, pp. 11–19 (1988)Google Scholar
  3. 3.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly Secure Message Transmission. Journal of the ACM 40(1), 17–47 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Desmedt, Y., Erotokritou, S., Safavi-Naini, R.: Simple and Communication Complexity Efficient Almost Secure and Perfectly Secure Message Transmission Schemes. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 166–183. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Desmedt, Y., Frankle, Y., Yung, M.: Multi-receiver/Multi-sender network security: efficient authenticated multicast/feedback. In: IEEE Infocom, pp. 2045–2054 (1992)Google Scholar
  6. 6.
    Elias, P.: List Decoding for Noisy Channels. Technical Report 335, MIT Research Lab of Electronics (1957)Google Scholar
  7. 7.
    Fitzi, M., Franklin, M., Garay, J., Vardhan, S.H.: Towards Optimal and Efficient Perfectly Secure Message Transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 311–322. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Franklin, M.K., Wright, R.N.: Secure Communication in Minimal Connectivity Models. Journal of Cryptology 13(1), 9–30 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Guruswami, V.: Linear-algebraic List Decoding of Folded Reed-Solomon Codes. CoRR abs/1106.0436 (2011)Google Scholar
  10. 10.
    Guruswami, V., Rudra, A.: Explicit Codes Achieving List Decoding Capability: Error-Correction With Optimal Redundancy. IEEE Transactions on Information Theory 54(1) (2008)Google Scholar
  11. 11.
    Guruswami, V., Sudan, M.: Improved Decoding of Reed-Solomon and Algebraic-Geometric Codes. In: FOCS, pp. 28–39 (1998)Google Scholar
  12. 12.
    Kurosawa, K., Suzuki, K.: Almost Secure (1-Round, n-Channel) Message Transmission Scheme. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 99–112. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Patra, A., Choudhary, A., Srinathan, K., Rangan, C.: Unconditionally Reliable and Secure Message Transmission in Undirected Synchronous Networks: Possibility, Feasibility and Optimality. IJACT 2(2), 159–197 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Srinathan, K.: Secure Distributed Communication. PhD Thesis, IIT Madras (2006)Google Scholar
  15. 15.
    Sudan, M.: Decoding of Reed Solomon Codes beyond the Error-Correction Bound. J. Complexity 13(1), 180–193 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Srinathan, K., Patra, A., Choudhary, A., Rangan, C.P.: Probabilistic Perfectly Reliable and Secure Message Transmission – Possibility, Feasibility and Optimality. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 101–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Srinathann, K., Choudhary, A., Patra, A., Rangann, C.: Efficient Single Phase Unconditionally Secure Message Transmission with Optimum Communication Complexity. In: PODC, p. 457 (2008)Google Scholar
  18. 18.
    Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal Perfectly Secure Message Transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Safavi-Naini, R., Tuhin, M.A.A., Shi, H.: Optimal Message Transmission Protocols with Flexible Parameters. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security (ASIACCS 2011), pp. 453–458 (2011)Google Scholar
  20. 20.
    Safavi-Naini, R., Tuhin, M.A.A., Wang, P.: A General Construction for 1-round δ-RMT and (0, δ)-SMT. Cryptology ePrint Archive (2012)Google Scholar
  21. 21.
    Tuhin, M.A.A., Safavi-Naini, R.: Optimal One Round Almost Perfectly Secure Message Transmission (Short Paper). In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 173–181. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Wu, J., Stinson, D.R.: Three Improved Algorithms for Multi-path Key Establishment in Sensor Networks Using Protocols for Secure Message Transmission. In: IEEE Transactions on Dependable and Secure Computing, pp. 929–937 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Reihaneh Safavi-Naini
    • 1
  • Mohammed Ashraful Alam Tuhin
    • 1
  • Pengwei Wang
    • 1
  1. 1.Department of Computer ScienceUniversity of CalgaryCanada

Personalised recommendations