Advertisement

On the Joint Security of Signature and Encryption Schemes under Randomness Reuse: Efficiency and Security Amplification

  • Afonso Arriaga
  • Manuel Barbosa
  • Pooya Farshim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7341)

Abstract

We extend the work of Bellare, Boldyreva and Staddon on the systematic analysis of randomness reuse to construct multi-recipient encryption schemes to the case where randomness is reused across different cryptographic primitives. We find that through the additional binding introduced through randomness reuse, one can actually obtain a security amplification with respect to the standard black-box compositions, and achieve a stronger level of security. We introduce stronger notions of security for encryption and signatures, where challenge messages can depend in a restricted way on the random coins used in encryption, and show that two variants of the KEM/DEM paradigm give rise to encryption schemes that meet this enhanced notion of security. We obtain the most efficient signcryption scheme to date that is secure against insider attackers without random oracles.

Keywords

Signcryption Insider Security Randomness Reuse 

References

  1. 1.
    Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A new framework for hybrid encryption. Journal of Cryptology 21, 97–130 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Boldyreva, A., Staddon, J.: Randomness Re-use in Multi-recipient Encryption Schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. London Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press (1999)Google Scholar
  6. 6.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. Journal of Cryptology 21, 149–177 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Chiba, D., Matsuda, T., Schuldt, J.C.N., Matsuura, K.: Efficient Generic Constructions of Signcryption with Insider Security in the Multi-user Setting. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 220–237. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Kurosawa, K.: Multi-recipient Public-Key Encryption with Shortened Ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 7–38. Springer, Heidelberg (2002)Google Scholar
  12. 12.
    Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient Constructions of Signcryption Schemes and Signcryption Composability. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 321–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Tan, C.H.: Insider-secure hybrid signcryption scheme without random oracles. In: Availability, Reliability and Security – ARES 2007, pp. 1148–1154 (2007)Google Scholar
  15. 15.
    Tan, C.H.: Insider-secure signcryption KEM/Tag-KEM schemes without random oracles. In: Availability, Reliability and Security – ARES 2008, pp. 1275–1281 (2008)Google Scholar
  16. 16.
    Tan, C.H.: Signcryption Scheme in Multi-user Setting without Random Oracles. In: Matsuura, K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 64–82. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption) < < Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Afonso Arriaga
    • 1
  • Manuel Barbosa
    • 1
  • Pooya Farshim
    • 2
  1. 1.HASLab/INESC TECUniversidade do MinhoBragaPortugal
  2. 2.Department of Computer ScienceDarmstadt University of TechnologyGermany

Personalised recommendations