Granulation in Pilot-Scale Reactor with Municipal Wastewater

  • Bing-Jie Ni
Part of the Springer Theses book series (Springer Theses, volume 131)


Aerobic granulation of activated sludge was achieved in a pilot-scale sequencing batch reactor (SBR) for the treatment of low-strength municipal wastewater (<200 mg L−1 of COD, chemical oxygen demand). The volume exchange ratio and settling time of an SBR were found to be two key factors in the granulation of activated sludge grown on the low-strength municipal wastewater. After operation of 300 days, the mixed liquor suspended solids (MLSS) concentration in the SBR reached 9.5 g L−1 and consisted of approximate 85 % granular sludge.


Activate Sludge Municipal Wastewater Sequencing Batch Reactor Granular Sludge Organic Loading Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. APHA: Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC (1995)Google Scholar
  2. Arrojo, B., Mosquera-Corral, A., Garrido, J.M., Mendez, R.: Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Res. 38, 3389–3399 (2004)CrossRefGoogle Scholar
  3. Beun, J.J., Hendriks, A., van Loosdrecht, M.C.M., Morgenroth, M., Wilderer, P.A., Heijnen, J.J.: Aerobic granulation in a sequencing batch reactor. Water Res. 33, 2283–2290 (1999)CrossRefGoogle Scholar
  4. Beun, J.J., Heijnen, J.J., van Loosdrecht, M.C.M.: N-removal in a granular sludge sequencing batch airlift reactor. Biotechnol. Bioeng. 75, 82–92 (2001)CrossRefGoogle Scholar
  5. Bos, R., van der Mei, H.C., Busscher, H.J.: Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol. Rev. 23, 179–230 (1999)Google Scholar
  6. Chu, H.P., Li, X.Y.: Membrane fouling in a membrane bioreactor (MBR): sludge formation and fouling characteristics. Biotechnol. Bioeng. 90, 323–331 (2005)CrossRefGoogle Scholar
  7. de Bruin, L.M.M., de Kreuk, M.K., van Der Roest, H.F.R., van Loosdrecht, M.C.M., Uijterlinde, C.: Aerobic granular sludge technology, alternative for activated sludge technology. Water Sci. Technol. 49, 1–9 (2004)Google Scholar
  8. de Kreuk, M.K.: Aerobic granular sludge scaling up a new technology. PhD thesis, Delft University of Technology, Delft (2006)Google Scholar
  9. de Kreuk, M.K., van Loosdrecht, M.C.M.: Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci. Technol. 49, 9–19 (2004)Google Scholar
  10. de Kreuk, M.K., van Loosdrecht, M.C.M.: Formation of aerobic granules with domestic sewage. J. Environ. Eng. 132, 694–697 (2006)CrossRefGoogle Scholar
  11. de Kreuk, M.K., Heijnen, J.J., van Loosdrecht, M.C.M.: Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol. Bioeng. 90, 761–769 (2005)CrossRefGoogle Scholar
  12. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination sugars and related substance. Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  13. Duncan-Hewitt, W.C., Policova, Z., Cheng, P., Vargha-Butler, E.I., Neumann, A.W.: Semi-automatic measurement of contact angles on cell layers by a modified axis symmetric drop shape analysis. Colloids Surf. 42, 391–402 (1989)Google Scholar
  14. Grady Jr., C.P.L., Daigger, G.T., Lim, H.C.: Biological wastewater treatment. Revised and expanded, 2nd edn. Marcel Dekker, New York (1999)Google Scholar
  15. Gujer, W., Henze, M., Mino, T., van Loosdrecht, M.C.M.: Activated sludge model No. 3. Water Sci. Technol. 39, 183–193 (1999)Google Scholar
  16. Irvine, R.L., Ketchum Jr., L.H.: Sequencing batch reactors for biological wastewater treatment. Critical Rev. Environ. Control 18, 255–294 (1988)CrossRefGoogle Scholar
  17. Jiang, H.L., Tay, J.H., Tay, S.T.L.: Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Lett. Appl. Microbiol. 35, 439–445 (2002)CrossRefGoogle Scholar
  18. Liu, Y., Tay, J.H.: Detachment forces and their influence on the structure and metabolic behaviour of biofilms. World J. Microb. Biotechnol. 17, 111–117 (2001)CrossRefGoogle Scholar
  19. Liu, Y., Tay, J.H.: State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv. 22, 533–563 (2004)CrossRefGoogle Scholar
  20. Lowry, O.H., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  21. Makinia, J., Rosenwinkel, K.H., Spering, V.: Long-term simulation of the activated sludge process at the Hanover-Gummerwald pilot WWTP. Water Res. 39, 1489–1502 (2005)CrossRefGoogle Scholar
  22. McSwain, B.S., Irvine, R.L., Wilderer, P.A.: The effect of intermittent feeding on aerobic granule structure. Water Sci. Technol. 49, 19–25 (2004)Google Scholar
  23. Moy, B.Y.P., Tay, J.H., Toh, S.K., Liu, Y., Tay, S.T.L.: High organic loading influences the physical characteristics of aerobic sludge granules. Lett. Appl. Microbiol. 34, 407–412 (2002)CrossRefGoogle Scholar
  24. Ni, B.J., Xie, W.M., Yu, H.Q., Wang, Y.Z., Wang, G., Dai, X.L.: Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res. 43, 751–761 (2009)CrossRefGoogle Scholar
  25. Ni, B.J., Yu, H.Q., Sun, Y.J.: Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. Water Res. 42, 1583–1594 (2008)CrossRefGoogle Scholar
  26. Peng, D., Bernet, N., Delgenes, J.P., Moletta, R.: Aerobic granular sludge-a case study. Water Res. 33, 890–893 (1999)CrossRefGoogle Scholar
  27. Reichert, P.: AQUASIM 2.0-user manual, computer program for the identification and simulation of aquatic systems. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf (1998)Google Scholar
  28. Roeleveld, P.J., Van Loosdrecht, M.C.M.: Experience with guidelines for wastewater characterisation in The Netherlands. Water Sci. Technol. 45, 77–87 (2002)Google Scholar
  29. Sahlstedt, K.E., Aurola, A.M., Fred, T.: Practical modelling of a large activated sludge DN-process with ASM3. In: Proceedings of the 9th IWA Specialized Conference on Design, Operation and Economics of Large Wastewater Treatment Plants, pp. 141–148. Praha, Czech Republic, 1–4 Sept 2003Google Scholar
  30. Schwarzenbeck, N., Erley, R., Mc Swain, B.S., Wilderer, P.A., Irvine, R.L.: Treatment of malting wastewater in a granular sludge sequencing batch reactor (SBR). Acta Hydrochim. Hydrobiol. 32, 16–24 (2004)CrossRefGoogle Scholar
  31. Su, K.Z., Yu, H.Q.: Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environ. Sci. Technol. 39, 2818–2827 (2005)CrossRefGoogle Scholar
  32. Thaveesri, J., Daffonchio, D., Liessens, B., Vandemeren, P., Verstraete, W.G.: Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics. Appl. Environ. Microbiol. 61, 3681–3686 (1995)Google Scholar
  33. Vargas-Garcia, M.C., Lopez, M.J., Elorrieta, M.A., Suarez, F., Moreno, J.: Properties of polysaccharide produced by Azotobacter vinelandii cultured on 4-hydroxylbenzolic acid. J. Appl. Microbiol. 94, 388–395 (2003)CrossRefGoogle Scholar
  34. Yang, S.F., Tay, J.H., Liu, Y.: Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules. J. Environ. Eng. ASCE 131, 86–92 (2005)Google Scholar
  35. Zhang, X.Q., Bishop, P.L., Kinkle, B.K.: Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water Sci. Technol. 39, 211–218 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bing-Jie Ni
    • 1
  1. 1.Advanced Water Management CentreThe University of QueenslandSt. Lucia BrisbaneAustralia

Personalised recommendations