• Bing-Jie Ni
Part of the Springer Theses book series (Springer Theses, volume 131)


In the last decade, intensive research has demonstrated that aerobic granular sludge technology is a novel and promising development in the field of biological wastewater treatment. This process is usually based on sequencing batch reactors (SBRs), with a cycle configuration chosen such that a strict selection for fast settling aerobic granules and a frequent repetition of distinct feast and famine conditions occur. This leads to the growth of stable and dense granules. Compared with the conventional activated sludge system, an aerobic granular sludge-based system has several advantages. An outstanding feature is the excellent settleability (high settling velocity) which is a prerequisite to handle high liquid flows. Moreover, granular sludge provides a high and stable rate of metabolism, resilience to shocks and toxins due to the protection by a matrix of extracellular polymeric substances (EPS) and internal storage products (X STO), long biomass residence times, biomass immobilization inside the granules, and therefore, the possibility for bioaugmentation. In this sense, aerobic granular sludge technology will play an important role as an innovative technology alternative for activated sludge process in industrial and municipal wastewater treatment in the near future. 


Activate Sludge Extracellular Polymeric Substance Sequencing Batch Reactor Granular Sludge Organic Loading Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adav, S.S., Lee, D.J., Show, K.Y., Tay, J.H.: Aerobic granular sludge: recent advances. Biotechnol. Adv. 26, 411–423 (2008)CrossRefGoogle Scholar
  2. Allesen-Holm, M., Barken, K.B., Yang, L., Klausen, M., Webb, J.S., Kjelleberg, S., et al.: A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59, 1114–1128 (2006)CrossRefGoogle Scholar
  3. Aqino, S.F.D.: Formation of soluble microbial products (SMP) in anaerobic digesters during stress conditions. Ph.D. Thesis, Imperial College, London (2004)Google Scholar
  4. Barker, D.J., Stuckey, D.C.: A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res. 33, 3063–3082 (1999)CrossRefGoogle Scholar
  5. Beccari, M., Majone, M., Massanisso, P., Ramadori, R.: A bulking sludge with high storage response selected under intermittent feeding. Water Res. 32, 3403–3413 (1998)CrossRefGoogle Scholar
  6. Beun, J.J., Heijnen, J.J., van Loosdrecht, M.C.M.: N-removal in a granular sludge sequencing batch airlift reactor. Biotechnol. Bioeng. 75, 82–92 (2001)CrossRefGoogle Scholar
  7. Beun, J.J., Hendriks, A., van Loosdrecht, M.C.M., Morgenroth, M., Wilderer, P.A., Heijnen, J.J.: Aerobic granulation in a sequencing batch reactor. Water Res. 33, 2283–2290 (1999)CrossRefGoogle Scholar
  8. Beun, J.J., Paletta, F., van Loosdrecht, M.C.M., Heijnen, J.J.: Stoichiometry and kinetics of poly-b-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures. Biotechnol. Bioeng. 67, 379–389 (2000)CrossRefGoogle Scholar
  9. Boero, V.J., Eckenfelder Jr., W.W., Bowers, A.R.: Soluble microbial product formation in biological systems. Water Sci. Technol. 23, 1067–1076 (1991)Google Scholar
  10. Boylen, C.W., Ensign, J.C.: Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of arthrobacter crustallopoietes. J. Bact. 103, 578–587 (1970)Google Scholar
  11. Burleigh, I.G., Dawes, E.A.: Studies on the endogenous metabolism and senescence of starved sarcin lutea. Biochem. J. 102, 236–250 (1967)Google Scholar
  12. Chen, M.Y., Lee, D.J., Tay, J.H.: Distribution of extracellular polymeric substances in aerobic granules. Appl. Microbiol. Biotechnol. 73, 1463–1469 (2007)CrossRefGoogle Scholar
  13. Chudoba, J.: Inhibitory effect of refractory organic compounds produced by activated sludge micro-organisms on microbial activity and flocculation. Water Res. 19, 197–200 (1985)CrossRefGoogle Scholar
  14. de Beer, D., O’Flaharty, V., Thaveesri, J., Lens, P., Verstraete, W.: Distribution of extracellular polysaccharides and flotation of anaerobic sludge. Appl. Microbiol. Biotechnol. 46, 197–201 (1996)CrossRefGoogle Scholar
  15. de Kreuk, M.K., Heijnen, J.J., van Loosdrecht, M.C.M.: Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol. Bioeng. 90, 761–769 (2005)CrossRefGoogle Scholar
  16. de Kreuk, M.K., Picioreanu, C., Hosseini, M., Xavier, J.B., van Loosdrecht, M.C.M.: Kinetic model of a granular sludge SBR–Influences on nutrient removal. Biotechnol. Bioeng. 97, 801–815 (2007)CrossRefGoogle Scholar
  17. de Kreuk, M.K., van Loosdrecht, M.C.M. Formation of aerobic granules with domestic sewage. J. Environ. Eng. 132, 694–697 (2006)CrossRefGoogle Scholar
  18. Dignac, M.F., Urbain, V., Rybacki, D., Bruchet, A., Snidaro, D., Scribe, P.: Chemical description of extracellular polymeric substances: implication on activated sludge floc structure. Water Sci. Technol. 38, 45–53 (1998)Google Scholar
  19. Emery, T.: Iron metabolism in humans and plants. Am. Sci. 70, 626–632 (1982)Google Scholar
  20. Frolund, B., Griebe, T., Nielsen, P.H.: Enzymatic activity in the activated-sludge floc matrix. Appl. Microbiol. Biotechnol. 43, 755–761 (1995)CrossRefGoogle Scholar
  21. Frolund, B., Palmgren, R., Keiding, K., Nielsen, P.H.: Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 30, 1749–1758 (1996)CrossRefGoogle Scholar
  22. Gaval, G., Pernelle, J.-J.: Impact of the repetition of oxygen deficiencies on the filamentous bacteria proliferation in activated sludge. Water Res. 37, 1991–2000 (2003)CrossRefGoogle Scholar
  23. Grady Jr, C.P.L., Daigger, G.T., Lim, H.C.: Biological Wastewater Treatment, 2nd edn. pp. 282–284. Marcel Dekker, New York (1999)Google Scholar
  24. Grunheid, S., Amy, G., Jekela, M.: Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res. 39, 3219–3228 (2005)CrossRefGoogle Scholar
  25. Harold, F.M.: Conservation and transformation of energy by bacterial membranes. Bact. Rev. 36, 172–230 (1972)Google Scholar
  26. Holakoo, L., Nakhla, G., Yanful, E.K., Bassi, A.S.: Chelating properties and molecular weight distribution of soluble microbial products from an aerobic membrane bioreactor. Water Res. 40, 1531–1538 (2006)CrossRefGoogle Scholar
  27. Houghton, J., Quarmby, J., Stephenson, T.: Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer. Water Sci. Technol. 44, 373–379 (2001)Google Scholar
  28. Hsieh, K.M., Murgel, G.A., Lion, L.W., Shuler, M.L.: Interactions of microbial biofilms with toxic trace metals: 1. Observation and modeling of cell growth, attachment, and production of extracellular polymer. Biotechnol. Bioeng. 44, 219–231 (1994)CrossRefGoogle Scholar
  29. Jarusutthirak, C., Amy, G.: Role of soluble microbial products (SMP) in membrane fouling and flux decline. Environ. Sci. Technol. 40, 969–974 (2006)CrossRefGoogle Scholar
  30. Jendrossek, D., Selchow, O., Hoppert, M.: Poly(3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum. Appl. Environ. Microbiol. 73, 586–593 (2007)CrossRefGoogle Scholar
  31. Jin, B., Wilen, B.M., Lant, P.A.: Comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge. Chem. Eng. J. 95, 221–234 (2003)CrossRefGoogle Scholar
  32. Kommedal, R., Bakke, R., Dockery, J., Stoodley, P.: Modelling production of extracellular polymeric substances in a Pseudomonas aeruginosa chemostat culture. Water Sci. Technol. 43, 129–134 (2001)Google Scholar
  33. Kuo, W.C.: Production of soluble microbial chelators and their impact on anaerobic treatment. Ph.D. thesis, University of Iowa, Iowa City (1993)Google Scholar
  34. Labbs, C., Amy, G., Jekel, M.: Understanding the size and character of fouling-causing substances from effluent organic matter (EfOM) in low-pressure membrane filtration. Environ. Sci. Technol. 40, 4495–4499 (2006)CrossRefGoogle Scholar
  35. Laspidou, C.S., Rittmann, B.E.: A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36, 2711–2720 (2002a)CrossRefGoogle Scholar
  36. Laspidou, C.S., Rittmann, B.E.: Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36, 1983–1992 (2002b)CrossRefGoogle Scholar
  37. Li., J., Zhang, Z.-J., Li, Z.-R., Huang, G.-Y., Abe, N.: Removal of organic matter and nitrogen from distillery wastewater by a combination of methane fermentation and denitrification/nitrification processes. J. Environ. Sci. 18, 654–659 (2006)Google Scholar
  38. Li, X.Y., Yang, S.F.: Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 41, 1022–1030 (2007)CrossRefGoogle Scholar
  39. Liao, B.Q., Allen, D.G., Droppo, I.G., Leppard, G.G., Liss, S.N.: Surface properties of sludge and their role in bioflocculation and settleability. Water Res. 35, 339–350 (2001)CrossRefGoogle Scholar
  40. Liu, Y., Fang, H.H.P.: Influence of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit. Rev. Environ. Sci. Technol. 33, 237–273 (2003)CrossRefGoogle Scholar
  41. Liu, Y.-Q., Moy, B.Y.-P., Tay, J.-H.: COD removal and nitrification of low-strength domestic wastewater in aerobic granular sludge sequencing batch reactors. Enzym. Microb. Technol. 42, 23–28 (2007)CrossRefGoogle Scholar
  42. Liu, Y., Tay, J.H.: The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 36(24), 1653–1665 (2002)CrossRefGoogle Scholar
  43. Liu, Y., Tay, J.H.: State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv. 22, 533–563 (2004)Google Scholar
  44. Majone, M., Dircks, K., Beun, J.J.: Aerobic storage under dynamic conditions in activated sludge processes—the state of the art. Water Sci. Technol. 39, 61–73 (1999)Google Scholar
  45. Martins, A.M.P., Heijnen, J.J., Van Loosdrecht, M.C.M.: Effect of dissolved oxygen concentration on sludge settleability. Appl. Microbiol. Biotechnol. 62, 586–593 (2003)CrossRefGoogle Scholar
  46. McSwain, B.S., Irvine, R.L., Wilderer, P.A.: Effect of intermittent feeding on aerobic granule structure. Wat. Sci. Tech. 49, 19–25 (2004)Google Scholar
  47. McSwain, B.S., Irvine, R.L., Hausner, M., Wilderer, P.A.: Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol. 71, 1051–1057 (2005)CrossRefGoogle Scholar
  48. Meijer, S.C.F.: Theoretical and practical aspects of modelling activated sludge processes. Ph.D. Thesis, Technical University, Delft, p. 204 (2004)Google Scholar
  49. Meyer, R.L., Saunders, A.M., Zeng, R.J., Keller, J., Blackall, L.L.: Microscale structure and function of anaerobic–aerobic granules containing glycogen accumulating organisms. FEMS Mcrobiol. Ecology. 45, 253–261 (2003)CrossRefGoogle Scholar
  50. Mikkelsen, L.H., Keiding, K.: Physico-chemical characteristics of full scale sewage sludges with implication to dewatering. Water Res. 36, 2451–2462 (2002)CrossRefGoogle Scholar
  51. Morgenroth, E., Sherden, T., van Loosdrecht, M.C.M., Heijnen, J.J., Wilderer, P.A.: Aerobic granular sludge in a sequencing batch reactor. Water Res. 31, 3191–3194 (1997)CrossRefGoogle Scholar
  52. Morel, F.M.M.: Principles of Aquatic Chemistry. John Wiley Interscience, New York (1983)Google Scholar
  53. Morgan, J.W., Forster, C.F., Evison, L.: A comparative study of the nature of biopolymers extracted form anaerobic and activated sludges. Water Res. 24, 743–753 (1990)CrossRefGoogle Scholar
  54. Mosquera-Corral, A., de Kreuk, M.K., Heijnen, J.J., van Loosdrecht, M.C.M.: Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Res. 39, 2676–2686 (2005)CrossRefGoogle Scholar
  55. Moy, B.Y.P., Tay, J.H., Toh, S.K., Liu, Y., Tay, S.T.L.: High organic loading influences the physical characteristics of aerobic sludge granules. Lett. Appl. Microbio. 34(6), 407–412 (2002)CrossRefGoogle Scholar
  56. Neijssel, O.M., Tempest, D.W.: The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Arch. Microbiol. 110, 305–311 (1976)CrossRefGoogle Scholar
  57. Nielsen, P.H., Jahn, A.: Extraction of EPS. In: Wingender, J., Neu, T.R., Flemming, H.C. (eds.). Microbial extracellular polymeric substances: characterization, structure and function. Chapter 3, pp. 49–72, Springer, Heidelberg (1999)Google Scholar
  58. Noguera, D.R., Araki, N., Rittmann, B.E.: Soluble microbial products in anaerobic chemostates. Biotechnol. Bioeng. 44, 1040–1047 (1994)CrossRefGoogle Scholar
  59. Oehmen, A., Yuan, Z., Blackall, L.L., Keller, J.: Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol. Bioeng. 91, 162–168 (2005)CrossRefGoogle Scholar
  60. Owen, W.F., Stuckey, D.C., Healy Jr, J.B., Young, L.Y., McCarty, P.L.: Bioassays for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485–492 (1979)CrossRefGoogle Scholar
  61. Pan, S., Tay, J.H., He, Y.X., Tay, S.T.L.: The effect of hydraulic retention time on the stability of aerobically grown microbial granules. Lett. Appl. Microbiol. 38, 158–163 (2004)CrossRefGoogle Scholar
  62. Payne, J.W.: Peptides and microorganisms. Adv. Microbiol. Physiol. 13, 55–113 (1976)CrossRefGoogle Scholar
  63. Peng, D., Bernet, N., Delgenes, J.P., Moletta, R.: Aerobic granular sludge-a case study. Water Res. 33, 890–893 (1999)CrossRefGoogle Scholar
  64. Pirt, S.J.: Principles of Microbe and Cell Cultivation. Blackwell Scientific, Oxford (1975)Google Scholar
  65. Pratt, S., Yuan, Z., Keller, J.: Modelling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements. Biotechnol. Bioeng. 88, 135–147 (2004)CrossRefGoogle Scholar
  66. Quarmby, J., Forster, C.F.: An examination of the structure of UASB granules. Water Res. 11, 2449–2454 (1995)CrossRefGoogle Scholar
  67. Reis, M.A.M., Serafim, L.S., Lemos, P.C., Ramos, A.M., Aguiar, F.R., van Loosdrecht, M.C.M.: Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst. Eng. 25, 377–385 (2003)CrossRefGoogle Scholar
  68. Rittmann, B.E., McCarty, P.L.: Environmental biotechnology: principles and applications. Mc-Graw Hill, New York (2001)Google Scholar
  69. Robinson, J., Trulear, M.G., Characklis, W.G.: Cellular reproduction and extracellular polymer formation by Pesudomonas aeruginosa in continuous culture. Biotechnol. Bioeng. 26, 1409–1417 (1984)CrossRefGoogle Scholar
  70. Rosenberger, S., Laabs, C., Lesjean, B., Gnirss, R., Amy, G., Jekel, M., Schrotter, J.C.: Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Res. 40, 710–719 (2006)CrossRefGoogle Scholar
  71. Saier, M.H., Feucht, B.U., McCaman, M.T.: Regulation of intracellular adenosine cyclic 3′:5′-mono-phosphate levels in Escherichia coli and Salmonella typhimurium. J. Biol. Chem. 250, 7593–7601 (1975)Google Scholar
  72. Schwarzenbeck, N., Borges, J.M., Wilderer, P.A.: Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl. Microbiol. Biotechnol. 66, 711–718 (2005)CrossRefGoogle Scholar
  73. Sesay, M.L., Ozcengiz, G., Sanin, F.D.: Enzymatic extraction of activated sludge extracellular polymers and implications on bioflocculation. Water Res 40, 1359–1366 (2006)CrossRefGoogle Scholar
  74. Spath, R., Flemming, H.C., Wuertz, S.: Sorption properties of biofilms. Water Sci. Technol. 37, 207–210 (1998)Google Scholar
  75. Su, K.Z., Yu, H.Q.: Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environ. Sci. Technol. 39, 2818–2828 (2005)CrossRefGoogle Scholar
  76. Su, K.Z., Yu, H.Q.: A generalized model of aerobic granule-based sequencing batch reactor—I. Model development. Environ. Sci. Technol. 40, 4703–4708 (2006a)CrossRefGoogle Scholar
  77. Su, K.Z., Yu, H.Q.: A generalized model for aerobic granule-based sequencing batch reactor—II. Parametric sensitivity and model verification. Environ. Sci. Technol. 40, 4709–4713 (2006b)CrossRefGoogle Scholar
  78. Tay, J.H., Liu, Q.S., Liu, Y.: The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett. Appl. Microbiol. 33, 222–226 (2001)CrossRefGoogle Scholar
  79. Tsuneda, S., Nagano, T., Hoshino, T., Ejiri, Y., Noda, N., Hirata, A.: Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res. 37, 4965–4973 (2003)CrossRefGoogle Scholar
  80. Tsuneda, S., Ogiwara, M., Ejiri, Y., Hirata, A.: High-rate nitrification using aerobic granular sludge. Water Sci. Technol. 53, 147–154 (2006)Google Scholar
  81. Turakhia, M.H., Characklis, W.G.: Activity of Pseudomonas aeruginosa in biofilms: effect of calcium. Biotechnol. Bioeng. 33, 406–414 (1989)CrossRefGoogle Scholar
  82. van Loosdrecht, M.C.M., Pot, M., Heijnen, J.: Importance of bacterial storage polymers in bioprocesses. Water Res. 35, 41–47 (1997)Google Scholar
  83. Veiga, M.C., Jain, M.K., Wu, W.M., Hollingsworth, R.I., Zeikus, J.G.: Composition and role of extracellular polymers in methanogenic granules. Appl. Environ. Microbiol. 63, 403–407 (1997)Google Scholar
  84. Wang, J., Yu, H.Q.: Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Appl. Microbiol. Biotechnol. 75, 871–878 (2007)CrossRefGoogle Scholar
  85. Washington, D.R., Clesceri, L.S., Young, J.C., Hardt, F.W.: Influence of microbial waste products on the metabolic activity of high solids activated sludge. In: Proceedings of 24th Purdue Industrial Waste Conference, pp. 1103–1117, Purdue University, West Lafayette, IN, (1970)Google Scholar
  86. Wilen, B.M., Keiding, K., Nielsen, P.H.: Anaerobic deflocculation and aerobic reflocculation of activated sludge. Water Res. 34, 3933–3942 (2000)CrossRefGoogle Scholar
  87. Xavier, J.B., de Kreuk, M.K., Picioreanu, C., van Loosdrecht, M.C.M.: Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge. Environ. Sci. Technol. 41, 6410–6417 (2007)CrossRefGoogle Scholar
  88. Yang, S.F., Li, X.Y., Yu, H.Q.: Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochem. 43, 8–14 (2008)CrossRefGoogle Scholar
  89. Yang, S.F., Liu, Q.S., Tay, J.H., Liu, Y.: Growth kinetics of aerobic granules developed in sequencing batch reactors. Lett. Appl. Microbiol. 38, 106–112 (2004)CrossRefGoogle Scholar
  90. Yang, S.F., Tay, J.H., Liu, Y.: Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules. J. Environ. Eng.–ASCE 131, 86–92 (2005)CrossRefGoogle Scholar
  91. Yang, Z., Peng, X.F., Chen, M.Y., Lee, D.J.: Intra-layer flow in fouling layer on membranes. J. Membrane Sci. 287, 280–286 (2007)CrossRefGoogle Scholar
  92. Zheng, Y.M., Yu, H.Q., Liu, S.J., Liu, X.Z.: Formation and instability of aerobic granules under high organic loading conditions. Chemosphere 63, 1791–1800 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bing-Jie Ni
    • 1
  1. 1.Advanced Water Management CentreThe University of QueenslandSt. Lucia BrisbaneAustralia

Personalised recommendations