Advertisement

Importing Montagovian Dynamics into Minimalism

  • Gregory M. Kobele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7351)

Abstract

Minimalist analyses typically treat quantifier scope interactions as being due to movement, thereby bringing constraints thereupon into the purview of the grammar. Here we adapt De Groote’s continuation-based presentation of dynamic semantics to minimalist grammars. This allows for a simple and simply typed compositional interpretation scheme for minimalism.

Keywords

Noun Phrase Lexical Item Derivation Tree Dynamic Semantic Scope Reading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abney, S.P.: The English Noun Phrase in its Sentential Aspect. Ph.D. thesis, Massachusetts Institute of Technology (1987)Google Scholar
  2. 2.
    Amblard, M.: Calculs de représentations sémantiques et syntaxe générative: les grammaires minimalistes catégorielles. Ph.D. thesis, Université Bordeaux I (2007)Google Scholar
  3. 3.
    Asher, N., Pogodalla, S.: A montagovian treatment of modal subordination. In: Li, N., Lutz, D. (eds.) Semantics and Linguistic Theory (SALT), vol. 20, pp. 387–405. eLanguage (2011)Google Scholar
  4. 4.
    Barss, A.: Chains and Anaphoric Dependence: On Reconstruction and its Implications. Ph.D. thesis, Massachusetts Institute of Technology (1986)Google Scholar
  5. 5.
    Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  6. 6.
    Cooper, R.: Quantification and Syntactic Theory. D. Reidel, Dordrecht (1983)Google Scholar
  7. 7.
    Cresti, D.: Extraction and reconstruction. Natural Language Semantics 3, 79–122 (1995)CrossRefGoogle Scholar
  8. 8.
    de Groote, P.: Towards a montagovian account of dynamics. In: Gibson, M., Howell, J. (eds.) Proceedings of SALT 16, pp. 1–16 (2006)Google Scholar
  9. 9.
    De Groote, P., Lebedeva, E.: Presupposition accommodation as exception handling. In: Fernandez, R., Katagiri, Y., Komatani, K., Lemon, O., Nakano, M. (eds.) The 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue - SIGDIAL 2010, pp. 71–74. Association for Computational Linguistics, Tokyo (2010)Google Scholar
  10. 10.
    Engelfriet, J.: Context-free graph grammars. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Beyond Words, vol. 3, ch.3, pp. 125–213. Springer (1997)Google Scholar
  11. 11.
    Evans, G.: Pronouns. Linguistic Inquiry 11(2), 337–362 (1980)Google Scholar
  12. 12.
    Gärtner, H.M., Michaelis, J.: Some remarks on locality conditions and minimalist grammars. In: Sauerland, U., Gärtner, H.M. (eds.) Interfaces + Recursion = Language?, Studies in Generative Grammar, vol. 89, pp. 161–195. Mouton de Gruyter, Berlin (2007)Google Scholar
  13. 13.
    Graf, T.: A tree transducer model of reference-set computation. UCLA Working Papers in Linguistics 15, Article 4 (2010)Google Scholar
  14. 14.
    Graf, T.: Closure Properties of Minimalist Derivation Tree Languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 96–111. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Hale, J.T., Stabler, E.P.: Strict Deterministic Aspects of Minimalist Grammars. In: Blache, P., Stabler, E.P., Busquets, J., Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 162–176. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Harkema, H.: Parsing Minimalist Languages. Ph.D. thesis, University of California, Los Angeles (2001)Google Scholar
  17. 17.
    Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell Publishers (1998)Google Scholar
  18. 18.
    Hendriks, H.: Studied Flexibility: Categories and types in syntax and semantics. Ph.D. thesis, Universitaet van Amsterdam (1993)Google Scholar
  19. 19.
    Hornstein, N.: Movement and chains. Syntax 1(2), 99–127 (1998)CrossRefGoogle Scholar
  20. 20.
    Jacobson, P.: Towards a variable-free semantics. Linguistics and Philosophy 22(2), 117–184 (1999)CrossRefGoogle Scholar
  21. 21.
    Johnson, K.: How far will quantifiers go? In: Martin, R., Michaels, D., Uriagereka, J. (eds.) Step by Step: Essays on Minimalist Syntax in Honor of Howard Lasnik, ch.5, pp. 187–210. MIT Press, Cambridge (2000)Google Scholar
  22. 22.
    Kanazawa, M., Michaelis, J., Salvati, S., Yoshinaka, R.: Well-Nestedness Properly Subsumes Strict Derivational Minimalism. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 112–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Kobele, G.M.: Generating Copies: An investigation into structural identity in language and grammar. Ph.D. thesis, University of California, Los Angeles (2006)Google Scholar
  24. 24.
    Kobele, G.M.: Inverse linking via function composition. Natural Language Semantics 18(2), 183–196 (2010)CrossRefGoogle Scholar
  25. 25.
    Kobele, G.M.: Minimalist Tree Languages Are Closed Under Intersection with Recognizable Tree Languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 129–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Kobele, G.M., Retoré, C., Salvati, S.: An automata theoretic approach to minimalism. In: Rogers, J., Kepser, S. (eds.) Proceedings of the Workshop Model-Theoretic Syntax at 10; ESSLLI 2007, Dublin (2007)Google Scholar
  27. 27.
    LeComte, A.: Semantics in minimalist-categorial grammars. In: de Groote, P. (ed.) FG 2008, pp. 41–59. CSLI Press (2008)Google Scholar
  28. 28.
    Michaelis, J.: On Formal Properties of Minimalist Grammars. Ph.D. thesis, Universität Potsdam (2001)Google Scholar
  29. 29.
    Parigot, M.: λμ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  30. 30.
    Pietrowski, P.M.: Events and Semantic Architecture. Oxford University Press (2005)Google Scholar
  31. 31.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88, 191–229 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Stabler, E.P.: Computing quantifier scope. In: Szabolcsi, A. (ed.) Ways of Scope Taking, ch. 5, pp. 155–182. Kluwer, Boston (1997)Google Scholar
  33. 33.
    Stabler, E.P.: Derivational Minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gregory M. Kobele
    • 1
  1. 1.University of ChicagoUSA

Personalised recommendations