Advertisement

Ludics and Natural Language: First Approaches

  • Christophe Fouqueré
  • Myriam Quatrini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7351)

Abstract

Ludics is a rebuilding of Linear Logic from the sole concept of interaction on objects called designs, that abstract proofs. Works have been done these last years to reconsider the formalization of Natural Language: a dialogue may be viewed as an interaction between such abstractions of proofs. We give a few examples taken from dialogue modeling but also from semantics or speech acts to support this approach.

Keywords

Positive Action Linear Logic Dual Action Logical Formula Negative Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lecomte, A., Quatrini, M.: Ludics and its applications to natural language semantics. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS, vol. 5514, pp. 242–255. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Fleury, M.-R., Tronçon, S.: Speech Acts in Ludics. In: Lecomte, A., Tronçon, S. (eds.) PRELUDE 2010. LNCS (LNAI), vol. 6505, pp. 1–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Lecomte, A., Quatrini, M.: Figures of Dialogue: a View from Ludics. Synthese 183, 59–85 (2011)zbMATHCrossRefGoogle Scholar
  4. 4.
    Lecomte, A., Quatrini, M.: Pour une étude du langage via l’interaction: dialogues et sémantique en Ludique. Mathématiques et Sciences Humaines 189(1), 37–67 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Girard, J.Y.: Locus solum: From the rules of logic to the logic of rules. Mathematical Structures in Computer Science 11(3), 301–506 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fouqueré, C.: Ludics and Web: Another Reading of Standard Operations. In: Lecomte, A., Tronçon, S. (eds.) PRELUDE 2010. LNCS (LNAI), vol. 6505, pp. 58–77. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Girard, J.Y.: From foundations to ludics. Bulletin of Symbolic Logic 9(2), 131–168 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Girard, J.Y.: Le Point Aveugle: vers l’imperfection. Visions des Sciences, vol. 2. Hermann (2007)Google Scholar
  10. 10.
    Curien, P.L.: Introduction to linear logic and ludics, part i. CoRR abs/cs/0501035 (2005)Google Scholar
  11. 11.
    Curien, P.L.: Introduction to linear logic and ludics, part ii. CoRR abs/cs/0501039 (2005)Google Scholar
  12. 12.
    Basaldella, M., Faggian, C.: Ludics with repetitions (exponentials, interactive types and completeness). In: LICS, pp. 375–384. IEEE Computer Society (2009)Google Scholar
  13. 13.
    Curien, P.-L., Faggian, C.: L-Nets, Strategies and Proof-Nets. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 167–183. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Fouqueré, C., Mogbil, V.: Rewritings for polarized multiplicative and exponential proof structures. Electr. Notes Theor. Comput. Sci. 203(1), 109–121 (2008)CrossRefGoogle Scholar
  15. 15.
    Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Log. Comput. 2(3), 297–347 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Faggian, C., Maurel, F.: Ludics nets, a game model of concurrent interaction. In: LICS, pp. 376–385. IEEE Computer Society (2005)Google Scholar
  17. 17.
    Terui, K.: Computational ludics. Theor. Comput. Sci. 412(20), 2048–2071 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Landragin, F.: Vers l’identification et le traitement des actes de dialogue composites. In: Traitement Automatique du Langage Naturel (TALN), pp. 460–469 (2008)Google Scholar
  19. 19.
    Chemillier, M.: Eléments pour une ethnomathématique de l’awélé. Mathématiques et Sciences Humaines 181(Varia), 5–34 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Schopenhauer, A.: L’art d’avoir toujours raison. Circé (1830)Google Scholar
  21. 21.
    Quatrini, M.: In: Une relecture ludique des stratagèmes de Schopenhauer. Presses de la Sorbonne (to appear)Google Scholar
  22. 22.
    Fleury, M.R., Quatrini, M.: First order in ludics. Mathematical Structures in Computer Science 14(2), 189–213 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Searle, J.: Speech Acts. Cambridge University Press (1969)Google Scholar
  24. 24.
    Walton, D.: The place of dialogue theory in logic, computer science and communication studies. Synthese 123, 327–346 (2000)zbMATHCrossRefGoogle Scholar
  25. 25.
    Brandom, R.: Articulating Reasons: An Introduction to Inferentialism. Harvard University Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christophe Fouqueré
    • 1
  • Myriam Quatrini
    • 2
  1. 1.LIPNUniversité Paris 13 and CNRSFrance
  2. 2.IMLUniversité d’Aix-Marseille and CNRSFrance

Personalised recommendations