Distributive Full Nonassociative Lambek Calculus with S4-Modalities Is Context-Free

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7351)

Abstract

We study Nonassociative Lambek Calculus with additives, satisfying the distributive law and S4-modalities. We prove that the categorial grammars based on it, also enriched with assumptions, generate context-free languages. This extends earlier results of Buszkowski [4] for NL (Nonassociative Lambek Calculus), Buszkowski and Farulewski [6] for DNFL (Distributive Full Nonassociative Lambek Calculus) and Plummer [19], [20] for NLS4 (Nonassociative Lambek Calculus with S4-modalities) without assumptions.

Keywords

Distributive Lattice Mathematical Linguistics Additional Axiom Categorial Grammar Derivable Sequent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belardinelli, F., Jipsen, P., Ono, H.: Algebraic aspects of cut elimination. Studia Logica 77, 209–240 (2004)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bernardi, R.: Reasoning with Polarity in Categorial Type Logic. PhD thesis, Utrecht (2002)Google Scholar
  3. 3.
    Buszkowski, W.: Generative Capacity of Nonassociative Lambek Calculus. Bulletin of Polish Academy of Sciences: Math 34, 507–516 (1986)MathSciNetMATHGoogle Scholar
  4. 4.
    Buszkowski, W.: Lambek Calculus with Nonlogical Axioms. In: Casadio, C., Scott, P., Seely, R. (eds.) Languages and Grammars Studies in Mathematical Linguistics and Natural Language. CSLI Lectures Notes, vol. 168, pp. 77–93 (2005)Google Scholar
  5. 5.
    Buszkowski, W.: Interpolation and FEP for logic of residuated algebras. Logic Journal of the IGPL 19(3), 437–454 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Buszkowski, W., Farulewski, M.: Nonassociative Lambek Calculus with Additives and Context-Free Languages. In: Grumberg, O., Kaminski, M., Katz, S., Wintner, S. (eds.) Francez Festschrift. LNCS, vol. 5533, pp. 45–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Heylen, D.: Types and Sorts Resource Logic for Feature Cheking. PhD thesis, Utrecht (1999)Google Scholar
  8. 8.
    Jäger, G.: On the generative capacity of multi-modal categorial grammars. Research on Language and Computation 1, 105–125 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Jäger, G.: Residuation, Structural Rules and Context Freeness. Journal of Logic, Language and Informationn 13, 47–59 (2004)MATHCrossRefGoogle Scholar
  10. 10.
    Kanazawa, M.: The Lambek Calculus enriched with Additional Connectives. Journal of Logic, Language and Information 1(2), 141–171 (1992)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kandulski, M.: The equivalence of Nonassociative Lambek Categorial Grammars and Context-free Grammars. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 52, 34–41 (1988)Google Scholar
  12. 12.
    Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65, 154–170 (1958)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lambek, J.: On the calculus of syntactic types. In: Structure of Language and Its Mathematical Aspects, pp. 168–178. American Mathematical Society (1961)Google Scholar
  14. 14.
    Lin, Z.: Modal Nonassociative Lambek Calculus with Assumptions: Complexity and Context-Freeness. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 414–425. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and Information 5, 349–385 (1996)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Moortgat, M.: Categorial types logic. In: van Benthem, J., ter Meulen, A. (eds.) Hand Book of Logic and Language, pp. 93–177. Elsevier (1997)Google Scholar
  17. 17.
    Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford University Press (2011)Google Scholar
  18. 18.
    Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science, pp. 429–433 (1993)Google Scholar
  19. 19.
    Plummer, A.: S4 enriched multimodal categorial grammars are context-free. Theoretical Computer Science 388, 173–180 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Plummer, A.: S4 enriched multimodal categorial grammars are context-free: corrigendum. Theoretical Computer Science 403, 406–408 (2008)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Versmissen, J.: Grammatical Composition: Modes, Models, Modalities. PhD thesis, Universiteit Utrecht (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhe Lin
    • 1
    • 2
  1. 1.Institute of Logic and CognitionSun Yat-sen UniversityGuangzhouChina
  2. 2.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations