Dynamics and Interaction of Experimental Dissipative Solitons

  • Andreas W. Liehr
Part of the Springer Series in Synergetics book series (SSSYN, volume 70)


Encouraged by the successful description of the dynamics and interaction of dissipative solitons by means of the particle approach, the concept is applied to experimentally observed dissipative solitons. Because the deterministic dynamics of dissipative solitons is superimposed by stochastic processes, a stochastic time series analysis is discussed, which enables not only the measurement of the drift-bifurcation but also the interaction between dissipative solitons.


Bifurcation Point Noise Amplitude Deterministic Part Dissipative Soliton Intrinsic Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 6.1.
    A. Einstein, in Contributions to the Medical Sciences in Honor of Emanuel Libman by his Pupils, Friends and Colleagues, vol. 1, ed. by E. Libman (International Press, New York, 1932), pp. 363–364Google Scholar
  2. 6.2.
    A. Pais, Subtle is the Lord … . The Science and the Life of Albert Einstein (Oxford University Press, New York, 1982)Google Scholar
  3. 6.3.
    S. Siegert, R. Friedrich, J. Peinke, Phys. Lett. A 243, 275 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 6.4.
    R. Friedrich, S. Siegert, S. Lück, M. Siefert, M. Lindemann, J. Raethjen, G. Deutschl, G. Pfister, Phys. Lett. A 271, 217 (2000)ADSCrossRefGoogle Scholar
  5. 6.5.
    R.L. Stratonovich, Conditional Markov Processes and Their Application to the Theory of Optimal Control (Elsevier, New York, 1968)zbMATHGoogle Scholar
  6. 6.6.
    A. Kolmogoroff, Math. Ann. 104, 415 (1931)MathSciNetCrossRefGoogle Scholar
  7. 6.7.
    H. Risken, The Fokker-Planck-Equation. Methods of Solution and Applications, 2nd edn. (Springer, Berlin, 1996)Google Scholar
  8. 6.8.
    S. Siefert, A. Kittel, R. Friedrich, J. Peinke, Eur. Lett. 61, 466 (2003)ADSCrossRefGoogle Scholar
  9. 6.9.
    P. Hänggi, Helv. Phys. Acta 51, 183 (1978)MathSciNetGoogle Scholar
  10. 6.10.
    H. Bödeker, M.C. Röttger, A.W. Liehr, T. Frank, R. Friedrich, H.-G. Purwins, Phys. Rev. E 67(056220), 1 (2003). doi:10.1103/ PhysRevE.67.056220Google Scholar
  11. 6.11.
    D. Kleinhans, R. Friedrich, in Wind Energy, ed. by J. Peinke, P. Schaumann, S. Barth (Springer Berlin/Heidelberg, 2007), pp. 129–133. doi: 10.1007/978-3-540-33866-6_23
  12. 6.12.
    H. Bödeker, A.W. Liehr, T.D. Frank, R. Friedrich, H.-G. Purwins, New J. Phys. 6(62), 1 (2004). Published with kind permission of IOPGoogle Scholar
  13. 6.13.
    A.W. Liehr, H.U. Bödeker, M.C. Röttger, T.D. Frank, R. Friedrich, H.-G. Purwins, New J. Phys. 5(89), 1 (2003). Published with kind permission of IOPGoogle Scholar
  14. 6.14.
    S.V. Gurevich, H.U. Bödeker, A.S. Moskalenko, A.W. Liehr, H.-G. Purwins, in Physics and Control (PhysCon). International Conference, August 20–22, 2003, Saint Petersburg, ed. by A.L. Fradkov, A.N. Churilov (IEEE, Piscataway, 2003), pp. 601–606Google Scholar
  15. 6.15.
    S.V. Gurevich, H.U. Bödeker, A.S. Moskalenko, A.W. Liehr, H.-G. Purwins, Phys. D 199(1–2), 115 (2004). doi:10.1016/j.physd.2004.08. 020. Reprinted with permission from ElsevierGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas W. Liehr
    • 1
  1. 1.Freiburg Materials Research CenterUniversity of FreiburgFreiburgGermany

Personalised recommendations