Interaction of Slow Dissipative Solitudes

  • Andreas W. Liehr
Part of the Springer Series in Synergetics book series (SSSYN, volume 70)


The following section accounts the interaction of slowly propagating dissipative solitons by means of a particle ansatz and a nonlinear perturbation analysis. This approach results into a reduction of the field dynamics to the position and excitation of the respective propagator mode where the interaction between dissipative solitons can be regarded approximately as classical central force. Starting from the reduced dynamics, scattering and the formation of bound states are investigated and compared to solutions of the underlying reaction-diffusion system, which shows good agreement between field and particle model. Also on basis of the reduced dynamics and under consideration of internal degrees of freedom the dynamics of rotating bound states are investigated which leads to the description of centrifugal forces and related distance dependent angular velocities. The chapter finishes with some general considerations on many-particle systems of dissipative solitons.


Spatial Discretization Dissipative Soliton Parameter Inhomogeneity Propagator Mode Binding Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 5.1.
    P.R.J. Boscovich, Theoria philosophiae naturalis. Redacta ad unicam legem virium in natura existentium (Remondiniana, Venedig, 1763)Google Scholar
  2. 5.2.
    R.J. Boscovich, A Theory of Natural Philosophy. English Edition From the Text of the First Venetian Edition Published Under the Personal Superintendence of The Author in 1763 (MIT, Cambridge, 1966)Google Scholar
  3. 5.3.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65(3), 851 (1993)ADSCrossRefGoogle Scholar
  4. 5.4.
    C. Elphick, E. Meron, E.A. Spiegel, Phys. Rev. Lett. 61 (1988)Google Scholar
  5. 5.5.
    C. Elphick, E. Meron, E.A. Spiegel, SIAM J. Appl. Math. 50(2), 490 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 5.6.
    C. Elphick, G.R. Ierley, O. Regev, E.A. Spiegel, Phys. Rev. A 44(2), 1110 (1991)ADSCrossRefGoogle Scholar
  7. 5.7.
    D. Barkley, Phys. D 49(1–2), 61 (1991)CrossRefGoogle Scholar
  8. 5.8.
    M. Or-Guil, I.G. Kevrekidis, M. Bär, Phys. D 135, 154 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 5.9.
    T. Ohta, J. Kiyose, M. Mimura, J. Phys. Soc. Jpn. 66(5), 1551 (1997)ADSzbMATHCrossRefGoogle Scholar
  10. 5.10.
    T. Ohta, Physica D 151(1), 61 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 5.11.
    S.I. Ei, M. Mimura, M. Nagayama, Phys. D 165(3–4), 176 (2002). doi: 10.1016/S0167-2789(02)00379-2Google Scholar
  12. 5.12.
    T. Teramoto, K.I. Ueda, Y. Nishiura, Phys. Rev. E 69(056224), 1 (2004)MathSciNetGoogle Scholar
  13. 5.13.
    M. Bode, Physica D 106(3–4), 270 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 5.14.
    M. Bode, A.W. Liehr, C.P. Schenk, H.-G. Purwins, Phys. D 161(1–2), 45 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 5.15.
    C.P. Schenk, Numerische und analytische Untersuchung solitärer Strukturen in zwei- und dreikomponentigen Reaktions–Diffusions–Systemen. Dissertation, Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster (1999)Google Scholar
  16. 5.16.
    A. Moskalenko, Dynamische gebundene Zustände und Drift-Rotations-Dynamik von dissipativen Solitonen. Master’s thesis, Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster (2002)Google Scholar
  17. 5.17.
    M.J. Ward, D. McInerney, P. Houston, D. Gavaghan, P. Maini, SIAM J. Appl. Math. 62(4), 1297 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 5.18.
    Y. Nishiura, T. Teramoto, X. Yuan, K.I. Ueda, Chaos 17(037104), 1 (2007). doi: 10.1063/1.2778553Google Scholar
  19. 5.19.
    X. Yuan, T. Teramoto, Y. Nishiura, Phys. Rev. E 75(036220), 1 (2007)MathSciNetGoogle Scholar
  20. 5.20.
    T. Teramoto, X. Yuan, M. Bär, Y. Nishiura, Phys. Rev. E 79(046205), 1 (2009). doi: 10.1103/PhysRevE.79.046205Google Scholar
  21. 5.21.
    Y. Nishiura, T. Teramoto, X. Yuan, Commun. Pure Appl. Anal 11(1), 307 (2012). doi: 10.3934/cpaa.2012.11.307Google Scholar
  22. 5.22.
    L.L. Whyte, in Roger Joseph Boscovich, S.J., F.R.S., 1711–1787, Studies of His Life and Work on The 250th Anniversary of his Birth, ed. by L.L. Whyte (Fordham University Press, New York, 1961), pp. 102–126Google Scholar
  23. 5.23.
    A. Moskalenko, A.W. Liehr, M. Bode, H.-G. Purwins, in International Conference on Theoretical Physics, July 22–27, 2002, Paris (2002), p. 321Google Scholar
  24. 5.24.
    A. Moskalenko, A.W. Liehr, M.C. Röttger, M. Bode, H.-G. Purwins, in Verhandl. DPG (VI), vol. 37 (Deutsche Physikalische Gesellschaft e. V., 2002), vol. 37, p. 125. Frühjahrstagung des Arbeitskreises Festkörperphysik bei der DPG, Regensburg vom 11. bis 15.03.2002Google Scholar
  25. 5.25.
    M. Bode, A.W. Liehr, C.P. Schenk, H.-G. Purwins, Phys. D 165(1–2), 127 (2002)MathSciNetGoogle Scholar
  26. 5.26.
    A.W. Liehr, A.S. Moskalenko, Yu.A. Astrov, M. Bode, H.-G. Purwins, Eur. Phys. J. B 37, 199 (2004). Figures published with kind permission of EDP SciencesGoogle Scholar
  27. 5.27.
    I. Newton, Philosophiæ naturalis principia mathematica (Innys, London, 1726).
  28. 5.28.
    C.P. Schenk, P. Schütz, M. Bode, H.-G. Purwins, Phys. Rev. E 57(6), 6480 (1998)ADSCrossRefGoogle Scholar
  29. 5.29.
    R.A. Proctor, A Treatise on the Cycloid and all Forms of Cycloidal Curves and on the Use of Such Curves Dealing With Motions of Planets, Comets, and of Matter Projected From the Sun (Longmans, Green and Co., London, 1879).
  30. 5.30.
    H. Stöcker (ed.), Taschenbuch mathematischer Formeln und moderner Verfahren, 3rd edn. (Verlag Harri Deutsch, Thun und Frankfurt am Main, 1995)Google Scholar
  31. 5.31.
    M.C. Röttger, Numerische Untersuchungen zur reduzierten Dynamik dissipativer Solitonen in einem dreikomponentigen Reaktions–Diffusions–System. Master’s thesis, Institut für Angewandte Physik, Westfälische Wilhelms–Universität Münster (2003). Figures published with kind permission of the author.Google Scholar
  32. 5.32.
    D. Barkley, M. Kness, L.S. Tuckerman, Phys. Rev. A 42(4), 2489 (1990)MathSciNetADSCrossRefGoogle Scholar
  33. 5.33.
    A.T. Winfree, Chaos 1(3), 303 (1991)MathSciNetADSCrossRefGoogle Scholar
  34. 5.34.
    D. Barkley, Phys. Rev. Lett. 72(1), 164 (1994)ADSCrossRefGoogle Scholar
  35. 5.35.
    H.U. Bödeker, Universal properties of self-organized localized structures. Dissertation, Institut für Angewandte Physik, Westfälische Wilhelms–Universität Münster (2007).

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas W. Liehr
    • 1
  1. 1.Freiburg Materials Research CenterUniversity of FreiburgFreiburgGermany

Personalised recommendations