Advertisement

Experimental Observations

  • Andreas W. Liehr
Chapter
Part of the Springer Series in Synergetics book series (SSSYN, volume 70)

Abstract

Starting points for getting acquainted with the phenomena of dissipative solitons are chemical reaction diffusion systems and a planar semiconductor-gas-discharge system. These systems exhibit dissipative solitons in the form of self-organized localized concentration spots and current density filaments, respectively. The chapter discusses the experiments and concentrates on the phenomena being directly related to the particle-like characteristics of dissipative solitons in spatially extended systems. These are the dynamics of single dissipative solitons, their mutual interaction by scattering and formation of bound states, as well as generation and annihilation processes. Due to the focus of the book, only continuously driven experiments are considered.

Keywords

Supply Voltage Turing Pattern Dissipative Soliton Luminance Distribution Ignition Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.1.
    G. Wald, Nobel Lect. Physiol. Med. 4, 255 (1967)Google Scholar
  2. 2.2.
    V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Phys. Rev. Lett. 64(24), 2953 (1990). doi:10.1103/PhysRevLett.64.2953ADSCrossRefGoogle Scholar
  3. 2.3.
    A. Mikhailov, K. Showalter, Phys. Rep. 425(2–3), 79 (2006). doi:10. 1016/j.physrep.2005.11.003MathSciNetADSCrossRefGoogle Scholar
  4. 2.4.
    V.K. Vanag, I.R. Epstein, Chaos 18(2), 026107 (2008). doi:10.1063/1. 2900555Google Scholar
  5. 2.5.
    H.H. Rotermund, S. Jakubith, A. von Oertzen, G. Ertl, Phys. Rev. Lett. 66(23), 3083 (1991). doi:10.1103/PhysRevLett.66.3083. Copyright 1991 by the American Physical SocietyADSCrossRefGoogle Scholar
  6. 2.6.
    K.J. Lee, W.D. McCormick, J.E. Pearson, H.L. Swinney, Nature 369, 215 (1994). doi:10.1038/369215a0ADSCrossRefGoogle Scholar
  7. 2.7.
    D.G. Míguez, V.K. Vanag, I.R. Epstein, Proc. Natl. Acad. Sci. USA 104(17), 6992 (2007). doi:10.1073/pnas.0611438104Google Scholar
  8. 2.8.
    W. Engel, M. Kordesch, H. Rotermund, S. Kubala, A. von Oertzen, Ultramicroscopy 36(1–3), 148 (1991). doi:10.1016/0304-3991(91) 90146-WGoogle Scholar
  9. 2.9.
    K. Asakura, J. Lauterbach, H.H. Rotermund, G. Ertl, J. Chem. Phys. 102(20), 8175 (1995). doi:10.1063/1.469229ADSCrossRefGoogle Scholar
  10. 2.10.
    J. Christoph, M. Eiswirth, N. Hartmann, R. Imbihl, I. Kevrekidis, M. Bär, Phys. Rev. Lett. 82(7), 1586 (1999). doi:10.1103/ PhysRevLett.82.1586ADSCrossRefGoogle Scholar
  11. 2.11.
    S.Y. Yamamoto, C.M. Surko, M.B. Maple, R.K. Pina, Phys. Rev. Lett. 74(20), 4071 (1995). doi:10.1103/PhysRevLett.74.4071ADSCrossRefGoogle Scholar
  12. 2.12.
    B.P. Belousov, in Compilation of Abstracts on Radiation Medicine (Medgiz, Moscow, 1959), pp. 145–152. In RussianGoogle Scholar
  13. 2.13.
    A.M. Zhabotinsky, Biofizika 9, 306 (1964). In RussianGoogle Scholar
  14. 2.14.
    A.N. Zaikin, A.M. Zhabotinsky, Nature 225, 535 (1970). doi:10.1038/ 225535b0ADSCrossRefGoogle Scholar
  15. 2.15.
    A.T. Winfree, Science 175, 634 (1972)ADSCrossRefGoogle Scholar
  16. 2.16.
    A.M. Zhabotinsky, A.N. Zaikin, J. Theor. Biol. 40(1), 45 (1973). doi:10.1016/0022-5193(73)90164-1CrossRefGoogle Scholar
  17. 2.17.
    L. Kuhnert, Nature 319, 393 (1986). doi:10.1038/319393a0ADSCrossRefGoogle Scholar
  18. 2.18.
    E. Mihaliuk, T. Sakurai, F. Chirila, K. Showalter, Faraday Discuss. 120, 383 (2002). doi:10.1039/b103431f. Reproduced by permission of The Royal Society of Chemistry.ADSCrossRefGoogle Scholar
  19. 2.19.
    E. Mihaliuk, T. Sakurai, F. Chirila, K. Showalter, Phys. Rev. E 65(6), 065602 (2002). doi:10.1103/PhysRevE.65.065602Google Scholar
  20. 2.20.
    S. Kádár, J. Wang, K. Showalter, Nature 391, 770 (1998). doi:10. 1038/35814ADSCrossRefGoogle Scholar
  21. 2.21.
    V.K. Vanag, L. Yang, M. Dolnik, A.M. Zhabotinsky, I.R. Epstein, Nature 406, 389 (2000). doi:10.1038/35019038ADSCrossRefGoogle Scholar
  22. 2.22.
    I. Sendina-Nadal, E. Mihaliuk, J. Wang, V. Perez-Munuzuri, K. Showalter, Phys. Rev. Lett. 86(8), 1646 (2001)ADSCrossRefGoogle Scholar
  23. 2.23.
    T. Sakurai, E. Mihaliuk, F. Chirila, K. Showalter, Science 296(5575), 2009 (2002). doi:10.1126/science.1071265Google Scholar
  24. 2.24.
    A.J. Steele, M. Tinsley, K. Showalter, Chaos 18(2), 026108 (2008). doi:10.1063/1.2900386Google Scholar
  25. 2.25.
    M.R. Tinsley, A.J. Steele, K. Showalter, Eur. Phys. J. 165, 161 (2008). doi:10.1140/epjst/e2008-00859-7Google Scholar
  26. 2.26.
    A.M. Turing, Philos. Trans. R. Soc. B 237, 37 (1952)ADSCrossRefGoogle Scholar
  27. 2.27.
    Z. Zoszticzius, W. Hosrthemke, W.D. McCormick, H.L. Swinney, W.Y. Tam, Nature 329, 619 (1987). doi:10.1038/329619a0ADSCrossRefGoogle Scholar
  28. 2.28.
    Q. Ouyang, V. Castets, J. Boissonade, J.C. Roux, P.D. Kepper, H.L. Swinney, J. Chem. Phys. 95(1), 351 (1991)ADSCrossRefGoogle Scholar
  29. 2.29.
    Q. Ouyang, H.L. Swinney, Nature 352, 610 (1991). doi:10.1038/ 352610a0ADSCrossRefGoogle Scholar
  30. 2.30.
    V.K. Vanag, I.R. Epstein, Phys. Rev. Lett. 87(22), 228301 (2001). doi:10.1103/PhysRevLett.87.228301ADSCrossRefGoogle Scholar
  31. 2.31.
    R.J. Field, E. Körös, R.M. Noyes, J. Am. Chem. Soc. 94(25), 8649 (1972). doi:10.1021/ja00780a001CrossRefGoogle Scholar
  32. 2.32.
    R.J. Field, R.M. Noyes, J. Chem. Phys. 60(5), 1877 (1974)ADSCrossRefGoogle Scholar
  33. 2.33.
    V.K. Vanag, I.R. Epstein, Patterns of nanodroplets: the Belousov-Zhabotinsky-aerosol OT-microemulsion system, in Self-Organized Morphology in Nanostructured Materials. Springer Series in Materials Science, vol. 99 (Springer, Heidelberg, 2008), pp. 89–113. doi:10.1007/978-3-540-72675-3∖{ _}5Google Scholar
  34. 2.34.
    A. Kaminaga, V.K. Vanag, I.R. Epstein, J. Chem. Phys. 122, 174706 (2005). doi:10.1063/1.1888386Google Scholar
  35. 2.35.
    A. Kaminaga, V.K. Vanag, I.R. Epstein, Angew. Chem. Int. Ed. 45, 3087 (2006). doi:10.1002/anie.200600400CrossRefGoogle Scholar
  36. 2.36.
    V.K. Vanag, I.R. Epstein, Phys. Rev. Lett. 92(12), 128301 (2004). doi:10.1103/PhysRevLett.92.128301ADSCrossRefGoogle Scholar
  37. 2.37.
    K.J. Lee, W.D. McCormick, Q. Ouyang, H.L. Swinney, Science 261(5118), 192 (1993). doi:10.1126/science.261.5118.192Google Scholar
  38. 2.38.
    R.D. Vigil, Q. Ouyang, H.L. Swinney, Phys. A 188, 17 (1992)CrossRefGoogle Scholar
  39. 2.39.
    I. Szalai, P.D. Kepper, J. Phys. Chem. A 112(5), 783 (2008). doi:10. 1021/jp711849mGoogle Scholar
  40. 2.40.
    I. Szalai, P.D. Kepper, Chaos Interdiscip. J. Nonlinear Sci. 18(2), 026105 (2008). doi:10.1063/1.2912719. http://link.aip.org/link/?CHA/18/026105/1. Copyright 2008, American Institute of Physics
  41. 2.41.
    Yu.A. Astrov, H.-G. Purwins, Phys. Lett. A 358, 404 (2006). doi:10. 1016/j.physleta.2006.05.047. Fig. 2.12 published with kind permission of Elsevier. Copyright (2006)ADSzbMATHCrossRefGoogle Scholar
  42. 2.42.
    K.J. Lee, W.D. McCormick, J.E. Pearson, H.L. Swinney, Nature 369, 215 (1994). doi:10.1038/369215a0ADSCrossRefGoogle Scholar
  43. 2.43.
    G. Li, Q. Ouyang, H.L. Swinney, J. Chem. Phys. 105(24), 10830 (1996). doi:10.1063/1.472891ADSCrossRefGoogle Scholar
  44. 2.44.
    T.C. Lengnick, Discharge tube. Patent 1,936,514, United States Patent Office (1933)Google Scholar
  45. 2.45.
    S.S. Kasimov, L.G. Paritskii, S.M. Rivkin, Investigation of the ionization-type image converter. VINITI N2693-74 (1974). In RussianGoogle Scholar
  46. 2.46.
    Yu.A. Astrov, L.M. Portsel, S.P. Teperick, H. Willebrand, H.-G. Purwins, J. Appl. Phys. 74(4), 2159 (1993)ADSCrossRefGoogle Scholar
  47. 2.47.
    L.M. Portsel, Yu.A. Astrov, I. Reimann, E. Ammelt, H.-G. Purwins, J. Appl. Phys. 85, 3960 (1999)Google Scholar
  48. 2.48.
    J.H.R. Kim, H. Maurer, Yu.A. Astrov, M. Bode, H.-G. Purwins, J. Comput. Phys. 170, 395 (2001)zbMATHGoogle Scholar
  49. 2.49.
    V.M. Marchenko, S. Matern, Yu.A. Astrov, L.M. Portsel, H.-G. Purwins, Proc. SPIE 4669, 1 (2002)ADSCrossRefGoogle Scholar
  50. 2.50.
    S. Matern, V.M. Marchenko, Yu.A. Astrov, L.M. Portsel, H.-G. Purwins, Proc. SPIE 4669, 13 (2002)ADSCrossRefGoogle Scholar
  51. 2.51.
    S. Matern, V.M. Marchenko, Yu.A. Astrov, L.M. Portsel, H.-G. Purwins, Photonik 3, 84 (2002)Google Scholar
  52. 2.52.
    H. Bödeker, A.W. Liehr, T.D. Frank, R. Friedrich, H.-G. Purwins, New J. Phys. 6(62), 1 (2004). Published with kind permission of IOP Publishing LtdGoogle Scholar
  53. 2.53.
    E. Ammelt, Yu.A. Astrov, H.-G. Purwins, Phys. Rev. E 58(6), 7109 (1998)ADSCrossRefGoogle Scholar
  54. 2.54.
    Yu.A. Astrov, E. Ammelt, S. Teperick, H.-G. Purwins, Phys. Lett. A 211(3), 184 (1996)ADSCrossRefGoogle Scholar
  55. 2.55.
    Yu.A. Astrov, Yu.A. Logvin, Phys. Rev. Lett. 79(16), 2983 (1997). Figs. 2.10, 2.11, and 2.20 published with kind permission of the American Physical Society. Copyright (1997)Google Scholar
  56. 2.56.
    E.L. Gurevich, A.S. Moskalenko, A.L. Zanin, Yu.A. Astrov, H.-G. Purwins, Phys. Lett. A  307(5–6), 299 (2003)ADSCrossRefGoogle Scholar
  57. 2.57.
    Yu.A. Astrov, E. Ammelt, H.-G. Purwins, Phys. Rev. Lett. 78(16), 3129 (1997)ADSCrossRefGoogle Scholar
  58. 2.58.
    Yu.A. Astrov, I. Müller, E. Ammelt, H.-G. Purwins, Phys. Rev. Lett. 24(15), 5341 (1998)ADSCrossRefGoogle Scholar
  59. 2.59.
    Yu.A. Astrov, H.-G. Purwins, Phys. Lett. A 283, 349 (2001). Figs. 2.9 and 2.13 published with kind permission of Elsevier. Copyright (2001)Google Scholar
  60. 2.60.
    H. Bödeker, M.C. Röttger, A.W. Liehr, T. Frank, R. Friedrich, H.-G. Purwins, Phys. Rev. E 67(056220), 1 (2003). doi:10.1103/ PhysRevE.67.056220Google Scholar
  61. 2.61.
    A.W. Liehr, H.U. Bödeker, M.C. Röttger, T.D. Frank, R. Friedrich, H.-G. Purwins, New J. Phys. 5(89), 1 (2003). http://stacks.iop.org/1367-2630/5/89. Published with kind permission of IOP Publishing Ltd
  62. 2.62.
    A.W. Liehr, A.S. Moskalenko, Yu.A. Astrov, M. Bode, H.-G. Purwins, Eur. Phys. J. B 37, 199 (2004). Figs. published with kind permission of EDP SciencesGoogle Scholar
  63. 2.63.
    C. Strümpel, H.-G. Purwins, Yu.A. Astrov, Phys. Rev. E 63(2), 026409/1 (2001)Google Scholar
  64. 2.64.
    C. Strümpel, Yu.A. Astrov, H.-G. Purwins, Phys. Rev. E 65(066210), 1 (2002)Google Scholar
  65. 2.65.
    D. Becker, Frontausbreitung und Filamentstrukturen in einem zweidimensionalen gleichspannungsbetriebenen Gasentladungssystem. Master’s thesis, Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster, 1994Google Scholar
  66. 2.66.
    S.V. Gurevich, H.U. Bödeker, A.S. Moskalenko, A.W. Liehr, H.-G. Purwins, Phys. D 199(1–2), 115 (2004). doi:10.1016/j.physd.2004.08. 020Google Scholar
  67. 2.67.
    H. Meinhardt, A. Gierer, J. Cell Sci. 15, 321 (1974)Google Scholar
  68. 2.68.
    E. Ammelt, Untersuchungen zur Strukturbildung in planaren Gasentladungssystemen mit bildverarbeitenden Methoden. Dissertation, Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster, 1995Google Scholar
  69. 2.69.
    H.-G. Purwins, AIP Conf. Proc. 993(1), 67 (2008). doi:10.1063/1.2909178. http://link.aip.org/link/?APC/993/67/1
  70. 2.70.
    J.C. Strümpel, Experimentelle Untersuchung der raumzeitlichen Strukturierung in einem planaren Halbleiter-Gasentladungssystem. Dissertation, Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster, 2001Google Scholar
  71. 2.71.
    H. Willebrand, F.-J. Niedernostheide, E. Ammelt, R. Dohmen, H.-G. Purwins, Phys. Lett. A 153(8), 437 (1991)ADSCrossRefGoogle Scholar
  72. 2.72.
    H.U. Bödeker, Dynamik und Wechselwirkung dissipativer Solitonen in einer planaren Gleichspannungs-Gasentladung. Master’s thesis, Institut für Angewandte Physik, Westfälische Wilhelms–Universität Münster, 2003Google Scholar
  73. 2.73.
    H.-G. Purwins, H.U. Bödeker, A.W. Liehr, in Dissipative Solitons, ed. by N. Akhmediev, A. Ankiewicz (Springer, Berlin, 2005), pp. 267–308CrossRefGoogle Scholar
  74. 2.74.
    J.C. Russ, The Image Processing Handbook, 4th edn. (CRC, Boca Raton, 2002)zbMATHGoogle Scholar
  75. 2.75.
    S. Flothkötter, Untersuchung laufender Stromfilamente in einem \(\mathrm{Si}\langle \mathrm{ZN}\rangle\)-Hybrid-Gasentl-adungssystem. Master’s thesis, Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster, 2001Google Scholar
  76. 2.76.
    P.R.J. Boscovich, Theoria philosophiae naturalis. Redacta ad unicam legem virium in natura existentium (Remondiniana, Venedig, 1763)Google Scholar
  77. 2.77.
    R.J. Boscovich, A Theory of Natural Philosophy. English Edition from the Text of the First Venetian Edition Published Under the Personal Superintendence of the Author in 1763 (MIT, Cambridge, 1966)Google Scholar
  78. 2.78.
    G.H. Gunaratne, M. El-Hamdi, M. Gorman, Mod. Phys. Lett. B 10(28), 1379 (1996)ADSCrossRefGoogle Scholar
  79. 2.79.
    A. Palacios, G.H. Gunaratne, M. Gorman, K.A. Robbins, Chaos 7(3), 463 (1997)ADSzbMATHCrossRefGoogle Scholar
  80. 2.80.
    A.L. Zanin, E.L. Gurevich, A.S. Moskalenko, H.U. Bödeker, H.-G. Purwins, Phys. Rev. E 70(3), 036202 (2004). doi:10.1103/PhysRevE. 70.036202Google Scholar
  81. 2.81.
    Y. Couder, S. Protiere, E. Fort, A. Boudaoud, Nature 437(7056), 208 (2005). doi:10.1038/437208aGoogle Scholar
  82. 2.82.
    S. Protiere, Y. Couder, E. Fort, A. Boudaoud, J. Phys. Condens. Matter 17(45), S3529 (2005). doi:10.1088/0953-8984/17/45/044Google Scholar
  83. 2.83.
    S. Protiere, A. Boudaoud, Y. Couder, J. Fluid Mech. 554(7056), 85 (2006). doi:10.1017/S0022112006009190Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas W. Liehr
    • 1
  1. 1.Freiburg Materials Research CenterUniversity of FreiburgFreiburgGermany

Personalised recommendations