Introduction

  • Andreas W. Liehr
Chapter
Part of the Springer Series in Synergetics book series (SSSYN, volume 70)

Abstract

The chapter introduces the topic of structure formation, and gives a literature survey to reaction-diffusion systems. It closes with a short guideline how to read the book.

Keywords

Spiral Galaxy Dissipative Soliton Ball Lightning Coat Pattern Slime Mould Dictyostelium Discoideum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.1.
    F. Stuart, The Magic Horns. Folk Tales from Africa, 2nd edn. (Addison-Wesley, Reading, 1976)Google Scholar
  2. 1.2.
    M.L. Nguyen, North china leopard (panthera pardus japonensis) seen through the glass of its cage. From the zoological garden of the Jardin Des Plantes in Paris. online (2006). http://commons.wikimedia.org/wiki/File:Panthera_pardus_japonensis_JdP.jpg
  3. 1.3.
    C. Weijer, in The Self-Made Tapestry. Pattern Formation in Nature, ed. by P. Ball (Oxford University Press, Oxford, 1999), p. 71. Published with kind permission of the authorGoogle Scholar
  4. 1.4.
    A.L. Hodgkin, Biol. Rev. Camb. Philos. Soc. 26(4), 339 (1951). Figure 1.1c published with kind permission of Cambridge University PressGoogle Scholar
  5. 1.5.
    R. Scorer, Clouds of the World. A Complete Colour Encyclopedia, 1st edn. (Lothian, Melbourne, 1972)Google Scholar
  6. 1.6.
    E.O. for Astronomical Research in the Southern Hemisphere. Vlt commissioning data now publicly available. ESO Press Release 18/99, URL: http://eso.org/outreach/press-rel/pr-1999/pr-18-99.html (1999). Figure 1.1e published with kind permission of ESO Public Affairs Department
  7. 1.7.
    R.E. Holzer, E.J. Workman, J. Appl. Phys. 10, 659 (1939). Figure 1.1f published with kind permission of American Institut of Physics. Copyright (1939)Google Scholar
  8. 1.8.
    S. Singer, Nature of Ball Lightning (Plenum, New York, 1971)CrossRefGoogle Scholar
  9. 1.9.
    E.L. Koschmieder, Adv. Chem. Phys. 26, 177 (1974)CrossRefGoogle Scholar
  10. 1.10.
    F. Goro, On the Nature of Things. The Scientific Photography of Fritz Goro (Aperture, New York, 1993). Figure 1.1h published with kind permission of Thomas GoreauGoogle Scholar
  11. 1.11.
    H. Willebrand, Strukturbildung in lateral ausgedehnten Gasentladungssystemen. Dissertation, Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster (1992). Figure 1.1i published with kind permission of the author.Google Scholar
  12. 1.12.
    W.L. Paye, M.H. Lippert, Why Leopard has Spots. Dan Stories from Liberia (Fulcrum, Colorado, 1998)Google Scholar
  13. 1.13.
    A.V. Getling, Rayleigh-Bénard Convection. Structures and Dynamics. Advanced Series in Nonlinear Dynamics, vol. 11 (World Scientific, Singapore, 1998)Google Scholar
  14. 1.14.
    J.D. Murray, Mathematical Biology (Springer, Berlin, 1993)MATHCrossRefGoogle Scholar
  15. 1.15.
    H. Haken, Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self- Organization in Physics, Chemistry and Biology. Springer Series in Synergetics, vol. 1, 3rd edn. (Springer, Berlin, 1983)Google Scholar
  16. 1.16.
    H. Haken, Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and Devices. Springer Series in Synergetics, vol. 20, 2nd edn. (Springer, Berlin, 1987)Google Scholar
  17. 1.17.
    F.T. Arecchi, Complexity in Science: Models and Metaphors, in The Emergence of Complexity in Mathematics, Physics, Chemistry and Biology, ed. by B. Pullman. Pontificiae Academiae Scientiarum Scripta Varia, vol. 89 (Princeton University Press, Princeton, 1996), pp. 129–160Google Scholar
  18. 1.18.
    S. Solomon, E. Shir, Europhys. News 34(2), 54 (2003)ADSCrossRefGoogle Scholar
  19. 1.19.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1995)CrossRefGoogle Scholar
  20. 1.20.
    I. Prigogine, Structure, Dissipation and Life (North-Holland, Amsterdam, 1969), pp. 23–53Google Scholar
  21. 1.21.
    R.J. Field, R.M. Noyes, J. Chem. Phys. 60(5), 1877 (1974)ADSCrossRefGoogle Scholar
  22. 1.22.
    D. Cartin, G. Khanna, Phys. Rev. E 65, 016120 (2001). doi: 10. 1103/PhysRevE.65.016120ADSCrossRefGoogle Scholar
  23. 1.23.
    L. Smolin, Galactic disks as reaction-diffusion systems (1996), arXiv:astro-phy/9612033Google Scholar
  24. 1.24.
    L. Smolin, Philos. Trans. R. Soc. Lond. A 361, 1081 (2003). doi: 10. 1098/rsta.2003.1185MathSciNetADSCrossRefGoogle Scholar
  25. 1.25.
    A.F.M. Marée, From pattern formation to morphogenesis. Multicellular coordination in dictyostelium discoideum. Dissertation, Faculteit Biologie, Universiteit Utrecht. (2000), http://www.iam.ubc.ca/~stan/Thesis/
  26. 1.26.
    A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)Google Scholar
  27. 1.27.
    R. FitzHugh, Biophys. J. 1, 445 (1962)CrossRefGoogle Scholar
  28. 1.28.
    J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962)CrossRefGoogle Scholar
  29. 1.29.
    C. Koch, Biophysics of Computation. Information Processing in Single Neurons. Computational Neuroscience (Oxford University Press, New York, 1999)Google Scholar
  30. 1.30.
    Yu.A. Astrov, H.-G. Purwins, Phys. Lett. A 283, 349 (2001). doi: 10.1016/S0375-9601(01)00257-2ADSCrossRefGoogle Scholar
  31. 1.31.
    M. Bode, H.-G. Purwins, Phys. D 86, 53 (1995)MathSciNetMATHCrossRefGoogle Scholar
  32. 1.32.
    C.I. Christov, M.G. Velarde, Phys. D 86, 323 (1995)MathSciNetMATHCrossRefGoogle Scholar
  33. 1.33.
    J.S. Russell, in Report of the fourteenth meeting of the British Association for the Advancement of Science. York 1844, London (1845), pp. 311–390, Fig.  XLVII–LVIIGoogle Scholar
  34. 1.34.
    M. Remoissenet, Waves Called Solitons: Concepts and Experiments, 3rd edn. (Springer, Berlin, 1999)MATHCrossRefGoogle Scholar
  35. 1.35.
    C. Elphick, E. Meron, E.A. Spiegel, SIAM J. Appl. Math. 50(2), 490 (1990)MathSciNetMATHCrossRefGoogle Scholar
  36. 1.36.
    D. Haim, G. Li, Q. Ouyang, W.D. McCormick, H.L. Swinney, A. Hagberg, E. Meron, Phys. Rev. Lett. 77(1), 190 (1996)ADSCrossRefGoogle Scholar
  37. 1.37.
    B.S. Kerner, V.V. Osipov, Autosolitons. A New Approach to Problems of Self-organization and Turbulence. Fundamental Theories of Physics, vol. 61 (Kluwer, Dordrecht, 1994)Google Scholar
  38. 1.38.
    P. Ball, The Self-made Tapestry. Pattern Formation in Nature (Oxford University Press, Oxford, 1999)Google Scholar
  39. 1.39.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65(3), 851 (1993)ADSCrossRefGoogle Scholar
  40. 1.40.
    Y. Nishiura, Far-From-Equilibrium Dynamics, Translations of Mathematical Monographs, vol. 209 (American Mathematical Society, Providence, 2002)Google Scholar
  41. 1.41.
    R.C. Hoyle, Pattern Formation. Introduction to Methods, 2nd edn. (Cambridge University Press, Cambridge, 2007)Google Scholar
  42. 1.42.
    P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, vol. 28 (Springer, Berlin, 1979)Google Scholar
  43. 1.43.
    J. Smoller, Shock Waves and Reaction Diffusion Equations, 2nd edn. (Springer, New York, 1994)MATHCrossRefGoogle Scholar
  44. 1.44.
    A.T. Winfree, When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias (Princeton University Press, Princeton, 1987)Google Scholar
  45. 1.45.
    A.J. Koch, H. Meinhardt, Rev. Mod. Phys. 66(4), 1481 (1994)ADSCrossRefGoogle Scholar
  46. 1.46.
    E. Mosekilde, O.G. Mouritsen (eds.), Modelling the Dynamics of Biological Systems. Nonlinear Phenomena and Pattern Formation (Springer, Berlin, 1995)Google Scholar
  47. 1.47.
    W. Alt, A. Deutsch, G. Dunn (eds.), Dynamics of Cell and Tissue Motion. Mathematics and Biosciences in Interaction (Birkhäuser, Basel, 1997)Google Scholar
  48. 1.48.
    H. Meinhardt, Int. J. Bifurc. Chaos 7, 1 (1997)MATHCrossRefGoogle Scholar
  49. 1.49.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence. Springer Series in Synergetics, vol. 19 (Springer, Berlin, 1984)Google Scholar
  50. 1.50.
    R.J. Field, M. Burger (eds.), Oscillations and Traveling Waves in Chemical Systems (Wiley, New York, 1985)Google Scholar
  51. 1.51.
    R. Kapral, K. Showalter (eds.), Chemical Waves and Patterns. Understanding Chemical Reactivity, vol. 10 (Kluwer, Dordrecht, 1995)Google Scholar
  52. 1.52.
    A. de Wit, Adv. Chem. Phys. 109, 435 (1999)CrossRefGoogle Scholar
  53. 1.53.
    G. Ertl, Adv. Catal. 45, 1 (2000)CrossRefGoogle Scholar
  54. 1.54.
    W. Weidlich, G. Haag, Concepts and Models of a Quantitative Sociology. The Dynamics of Interacting Populations. Springer Series in Synergetics, vol. 14 (Springer, Berlin, 1983)Google Scholar
  55. 1.55.
    M.A. Vorontsov, W.B. Miller (eds.), Self-organization in Optical Systems and Application in Information Technology, 2nd edn. (Springer, Berlin, 1998)Google Scholar
  56. 1.56.
    F.T. Arecchi, S. Boccaletti, P. Ramazza, Phys. Rep. 328(1–2), 1 (1999)ADSCrossRefGoogle Scholar
  57. 1.57.
    T. Ackemann, W. Lange, Appl. Phys. B 72, 21 (2001)ADSCrossRefGoogle Scholar
  58. 1.58.
    K. Aoki, Nonlinear Dynamics and Chaos in Semiconductors (Institute of Physics Publishing, Bristol/Philadelphia, 2001)CrossRefGoogle Scholar
  59. 1.59.
    E. Schöll, Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors. Cambridge Nonlinear Science Series, vol. 10 (Cambridge University Press, Cambridge, 2001)Google Scholar
  60. 1.60.
    T.E. Faber, Fluid Dynamics for Physicists, 2nd edn. (Cambridge University Press, Cambridge, 1997)Google Scholar
  61. 1.61.
    A. Buka, L. Kramer (eds.), Pattern Formation in Liquid Crystals. Partially Ordered Systems (Springer, Berlin, 1996)Google Scholar
  62. 1.62.
    G.H. Ristow, Pattern Formation in Granular Materials. Springer Tracks in Modern Physics, vol. 164 (Springer, Berlin, 2000)Google Scholar
  63. 1.63.
    H. Engel, F.-J. Niedernostheide, H.-G. Purwins, E. Schöll, Self-organization in Activator-Inhibitor-Systems: Semiconductors, Gas-Discharge and Chemical Media (Wissenschaft- und Technik-Verlag, Berlin, 1996)Google Scholar
  64. 1.64.
    H.-G. Purwins, Yu.A. Astrov, I. Brauer, in The 5th Experimental Chaos Conference, Orlando, 28 June – 1 July 1999, ed. by M. Ding, W.L. Ditto, L.M. Pecora, M.L. Spano (World Scientific, Singapore, 2001), pp. 3–13Google Scholar
  65. 1.65.
    H.-G. Purwins, H.U. Bödeker, S. Amiranashvili, Adv. Phys. 59(5), 485 (2010). doi: 10.1080/00018732.2010.498228ADSCrossRefGoogle Scholar
  66. 1.66.
    A.L. Hodgkin, Biol. Rev. Camb. Philos. Soc. 26(4), 339 (1951)CrossRefGoogle Scholar
  67. 1.67.
    A. Scott, Active and Nonlinear Wave Propagation in Electronics (Wiley, New York, 1970)Google Scholar
  68. 1.68.
    P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382(6594), 793 (1996)ADSCrossRefGoogle Scholar
  69. 1.69.
    C. Crawford, H. Riecke, Phys. D 129, 83 (1999)CrossRefGoogle Scholar
  70. 1.70.
    H.H. Rotermund, S. Jakubith, A. von Oertzen, G. Ertl, Phys. Rev. Lett. 66(23), 3083 (1991). doi: 10.1103/PhysRevLett.66.3083ADSCrossRefGoogle Scholar
  71. 1.71.
    K.J. Lee, W.D. McCormick, J.E. Pearson, H.L. Swinney, Nature 369, 215 (1994). doi: 10.1038/369215a0ADSCrossRefGoogle Scholar
  72. 1.72.
    V.K. Vanag, I.R. Epstein, Chaos 17(3), 037110 (2007). doi: 10.1063/ 1.2752494Google Scholar
  73. 1.73.
    D.G. Míguez, V.K. Vanag, I.R. Epstein, Proc. Natl. Acad. Sci. USA 104(17), 6992 (2007). doi: 10.1073/pnas.0611438104Google Scholar
  74. 1.74.
    O. Lioubashevski, H. Arbell, J. Fineberg, Phys. Rev. Lett. 76(21), 3959 (1996)ADSCrossRefGoogle Scholar
  75. 1.75.
    B. Schäpers, M. Feldmann, T. Ackemann, W. Lange, Phys. Rev. Lett. 85, 748 (2000)ADSCrossRefGoogle Scholar
  76. 1.76.
    Yu.A. Astrov, Semiconductors 27(11–12), 1084 (1993)ADSGoogle Scholar
  77. 1.77.
    V.V. Bel’kov, J. Hirschinger, V. Novák, F.-J. Niedernostheide, S.D. Ganichev, W. Prettl, Nature 397(4), 398 (1999)Google Scholar
  78. 1.78.
    Y.H. Ohtsuki, H. Ofuruton, Nature 350, 139 (1991)ADSCrossRefGoogle Scholar
  79. 1.79.
    F.-J. Niedernostheide, B.S. Kerner, H.-G. Purwins, Phys. Rev. B 46, 7559 (1992)ADSCrossRefGoogle Scholar
  80. 1.80.
    Yu.A. Astrov, Yu.A. Logvin, Phys. Rev. Lett. 79(16), 2983 (1997)ADSCrossRefGoogle Scholar
  81. 1.81.
    I. Müller, E. Ammelt, H.-G. Purwins, Phys. Rev. Lett. 82, 3428 (1999)ADSCrossRefGoogle Scholar
  82. 1.82.
    I. Brauer, M. Bode, E. Ammelt, H.-G. Purwins, Phys. Rev. Lett. 84(18), 4104 (2000)ADSCrossRefGoogle Scholar
  83. 1.83.
    S. Nasuno, Chaos 13(3), 1010 (2003)ADSCrossRefGoogle Scholar
  84. 1.84.
    J. Martensson, A. Berntson, IEEE Photonics Technol. Lett. 13(7), 666 (2001)ADSCrossRefGoogle Scholar
  85. 1.85.
    A. Adamatzky, Computing in Nonlinear Media and Automata Collectives (Institute of Physics Publishing, Bristol, 2001)MATHCrossRefGoogle Scholar
  86. 1.86.
    A. Adamatzky, Chaos, Solitons Fractals 21(5), 1259 (2004). doi: 10. 1016/j.chaos.2003.12.068Google Scholar
  87. 1.87.
    A. Adamatzky, in Unconventional Programming Paradigms. Lecture Notes in Computer Science, vol. 3566 (Springer, Berlin, 2005), pp. 33–46. doi: 10.1007/11527800{ _}3Google Scholar
  88. 1.88.
    A.L. Zanin, A.W. Liehr, A.S. Moskalenko, H.-G. Purwins, App. Phys. Lett. 81(18), 3338 (2002). doi: 10.1063/1.1518775ADSCrossRefGoogle Scholar
  89. 1.89.
    B. de Lacy Costello, A. Adamatzky, N. Ratcliffe, A.L. Zanin, A.W. Liehr, H.-G. Purwins, Int. J. Bifurc. Chaos 14(7), 2187 (2004). doi: 10.1142/S021812740401059XGoogle Scholar
  90. 1.90.
    J.A. Sepulchre, A. Babloyantz, L. Stells, in Proceedings of the International Conference on Artificial Neural Networks, ed. by T. Kohonen, K. Makisara, O. Simula, J. Kangas (Elsevier, Amsterdam, 1991), p. 1265Google Scholar
  91. 1.91.
    A. Mikhailov, K. Showalter, Phys. Rep. 425(2–3), 79 (2006). doi: 10.1016/j.physrep.2005.11.003MathSciNetADSCrossRefGoogle Scholar
  92. 1.92.
    T. Ichino, T. Asahi, H. Kitahata, N. Magome, K. Agladze, K. Yoshikawa, J. Phys. Chem. C 112(8), 3032 (2008). doi: 10.1021/ jp7097922Google Scholar
  93. 1.93.
    P. Coullet, C. Riera, C. Tresser, Chaos Interdiscip. J. Nonlinear Sci. 14(1), 193 (2004). doi: 10.1063/1.1642311Google Scholar
  94. 1.94.
    A. Kaminaga, V.K. Vanag, I.R. Epstein, Angew. Chem. Int. Ed. 45, 3087 (2006). doi: 10.1002/anie.200600400CrossRefGoogle Scholar
  95. 1.95.
    H.-G. Purwins, AIP Conf. Proc. 993(1), 67 (2008). doi: 10.1063/1.2909178. http://link.aip.org/link/?APC/993/67/1
  96. 1.96.
    A. Ankiewicz, N. Akhmediev (eds.), Dissipative Solitons. Lecture Notes in Physics (Springer, Berlin, 2005)Google Scholar
  97. 1.97.
    N. Akhmediev, A. Ankiewicz (eds.), Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, vol. 751 (Springer, Heidelberg, 2008). doi: 10.1007/978-3-540-78217-9Google Scholar
  98. 1.98.
    E. Meron, Phys. Rep. 218(1), 1 (1992)MathSciNetADSCrossRefGoogle Scholar
  99. 1.99.
    D. Barkley, Phys. Rev. Lett. 72(1), 164 (1994)ADSCrossRefGoogle Scholar
  100. 1.100.
    J. Schütze, O. Steinbock, S.C. Müller, Nature 356(6364), 45 (1992)ADSCrossRefGoogle Scholar
  101. 1.101.
    S. Komineas, F. Heilmann, L. Kramer, Phys. Rev. E 63(011103), 1 (2000)Google Scholar
  102. 1.102.
    A.S. Mikhailov, Foundations of Synergetics I. Distributed Active Systems. Springer Series in Synergetics, vol. 51 (Springer, Berlin, 1990)Google Scholar
  103. 1.103.
    A.M. Turing, Phil. Trans. R. Soc. B 237, 37 (1952)ADSCrossRefGoogle Scholar
  104. 1.104.
    E.M. Nicola, M. Or-Guil, W. Wolf, M. Bär, Phys. Rev. E 65(055101), 1 (2002)Google Scholar
  105. 1.105.
    G. Heidemann, M. Bode, H.-G. Purwins, Phys. Lett. A 177, 225 (1993)ADSCrossRefGoogle Scholar
  106. 1.106.
    M. Or-Guil, M. Bode, Phys. A 249 (1998)Google Scholar
  107. 1.107.
    P. Coullet, C. Riera, C. Tresser, Phys. Rev. Lett. 84(14), 3069 (2000)ADSCrossRefGoogle Scholar
  108. 1.108.
    A.W. Liehr, M. Bode, H.-G. Purwins, in High Performance Computing in Science and Engineering 2000. Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2000, ed. by E. Krause, W. Jäger (Springer, Berlin, 2001), pp. 425–439CrossRefGoogle Scholar
  109. 1.109.
    Yu.A. Astrov, Phys. Rev. E 67(035203(R)), 1 (2003)Google Scholar
  110. 1.110.
    M.C. Röttger, Numerische Untersuchungen zur reduzierten Dynamik dissipativer Solitonen in einem dreikomponentigen Reaktions–Diffusions–System. Master’s thesis, Institut für Angewandte Physik, Westfälische Wilhelms–Universität Münster (2003)Google Scholar
  111. 1.111.
    M. Bode, Beschreibung strukturbildender Prozesse in eindimensionalen Reaktions–Diffusions–Systemen durch Reduktion auf Amplitudengleichungen und Elementarstrukturen. Dissertation, Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster (1993)Google Scholar
  112. 1.112.
    A. Malevanets, R. Kapral, Phys. Rev. Lett. 77(4), 767 (1996)ADSCrossRefGoogle Scholar
  113. 1.113.
    A. Hagberg, E. Meron, Chaos 4(3), 477 (1994)ADSCrossRefGoogle Scholar
  114. 1.114.
    A. Hagberg, E. Meron, Nonlinearity 7, 805 (1994). doi: 10.1088/ 0951-7715/7/3/006MathSciNetADSMATHCrossRefGoogle Scholar
  115. 1.115.
    M. Bode, A. Reuter, R. Schmehling, H.-G. Purwins, Phys. Lett. A 185, 70 (1994)ADSCrossRefGoogle Scholar
  116. 1.116.
    G. Flätgen, K. Krischer, Phys. Rev. E 51, 3997 (1995)ADSCrossRefGoogle Scholar
  117. 1.117.
    G. Haas, M. Bär, I.G. Kevrekidis, P.B. Rasmussen, H.H. Rotermund, G. Ertl, Phys. Rev. Lett. 75, 3560 (1995)ADSCrossRefGoogle Scholar
  118. 1.118.
    A. Malevanets, A. Careta, R. Kapral, Phys. Rev. E 52(5), 4724 (1995)ADSCrossRefGoogle Scholar
  119. 1.119.
    P. Schütz, M. Bode, V.V. Gafiichuk, Phys. Rev. E 52, 4465 (1995)MathSciNetADSCrossRefGoogle Scholar
  120. 1.120.
    R.D. Benguria, M.C. Depassier, Phys. Rev. E 77(6), 1171 (1996)ADSGoogle Scholar
  121. 1.121.
    A. Hagberg, E. Meron, Phys. Rev. Lett. 78(6), 1166 (1997)ADSCrossRefGoogle Scholar
  122. 1.122.
    M. Sheintuch, O. Nehkamkina, Phys. Rev. E 63(056120), 1 (2001)Google Scholar
  123. 1.123.
    Y. Morita, H. Ninomiya, Sugaku Expos. 23, 213 (2010)MathSciNetMATHGoogle Scholar
  124. 1.124.
    M. Bode, Phys. D 106(3–4), 270 (1997)MathSciNetMATHCrossRefGoogle Scholar
  125. 1.125.
    R. Luther, Zeitschrift für Elektrochemie 12, 596 (1906)CrossRefGoogle Scholar
  126. 1.126.
    H.P. McKean Jr., Adv. Math. 4, 209 (1970)MathSciNetMATHCrossRefGoogle Scholar
  127. 1.127.
    S. Koga, Y. Kuramoto, Prog. Theor. Phys. 63(1), 106 (1980)ADSCrossRefGoogle Scholar
  128. 1.128.
    T. Ohta, M. Mimura, R. Kobayashi, Phys. D 34, 115 (1989)MathSciNetMATHCrossRefGoogle Scholar
  129. 1.129.
    J. Rinzel, J.B. Keller, Biophys. J. 13(12), 1313 (1972)CrossRefGoogle Scholar
  130. 1.130.
    R. Dohmen, Entwicklung von Modellgleichungen zur Beschreibung nichtlinearer Systeme und Untersuchung der Lösungsvielfalt mit analytischen und numerischen Mitteln. Dissertation, Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster (1991)Google Scholar
  131. 1.131.
    C. Elphick, G.R. Ierley, O. Regev, E.A. Spiegel, Phys. Rev. A 44(2), 1110 (1991)ADSCrossRefGoogle Scholar
  132. 1.132.
    C. Elphick, A. Hagberg, B.A. Malomed, E. Meron, Phys. Lett. A 230(1–2), 33 (1997)ADSCrossRefGoogle Scholar
  133. 1.133.
    V.V. Osipov, Phys. D 93, 143 (1996)MATHCrossRefGoogle Scholar
  134. 1.134.
    H. Hempel, I. Schebesch, L. Schimansky-Geier, Eur. Phys. J. B 2, 399 (1998)ADSCrossRefGoogle Scholar
  135. 1.135.
    T. Ohta, J. Kiyose, M. Mimura, J. Phys. Soc. Jpn. 66(5), 1551 (1997)ADSMATHCrossRefGoogle Scholar
  136. 1.136.
    S.I. Ei, M. Mimura, M. Nagayama, Phys. D 165(3–4), 176 (2002). doi: 10.1016/S0167-2789(02)00379-2Google Scholar
  137. 1.137.
    M. Or-Guil, I.G. Kevrekidis, M. Bär, Phys. D 135, 154 (2000)MathSciNetMATHCrossRefGoogle Scholar
  138. 1.138.
    Y. Nishiura, D. Ueyama, Phys. D 130, 73 (1999)MATHCrossRefGoogle Scholar
  139. 1.139.
    C.P. Schenk, P. Schütz, M. Bode, H.-G. Purwins, Phys. Rev. E 57(6), 6480 (1998)ADSCrossRefGoogle Scholar
  140. 1.140.
    L.M. Pismen, Phys. Rev. Lett. 86(15), 548 (2001)ADSCrossRefGoogle Scholar
  141. 1.141.
    K. Krischer, A. Mikhailov, Phys. Rev. Lett. 73(23), 3165 (1994)ADSCrossRefGoogle Scholar
  142. 1.142.
    T. Ohta, Phys. D 151(1), 61 (2001)MathSciNetMATHCrossRefGoogle Scholar
  143. 1.143.
    C.P. Schenk, M. Or-Guil, M. Bode, H.-G. Purwins, Phys. Rev. Lett. 78, 3781 (1997)ADSCrossRefGoogle Scholar
  144. 1.144.
    A. Doelman, P. van Heijster, T. Kaper, J. Dyn. Differ. Equ. 21(1), 73 (2009). doi: 10.1007/s10884-008-9125-2MATHCrossRefGoogle Scholar
  145. 1.145.
    M. Suzuki, T. Ohta, M. Mimura, H. Sakaguchi, Phys. Rev. E 52(4), 3645 (1995)MathSciNetADSCrossRefGoogle Scholar
  146. 1.146.
    R. Woesler, P. Schütz, M. Bode, M. Or-Guil, H.-G. Purwins, Phys. D 91(4), 376 (1996)MathSciNetMATHCrossRefGoogle Scholar
  147. 1.147.
    M. Or-Guil, M. Bode, C.P. Schenk, H.-G. Purwins, Phys. Rev. E 57(6), 6432 (1998)ADSCrossRefGoogle Scholar
  148. 1.148.
    Y. Nishiura, T. Teramoto, K.I. Ueda, Chaos 13(3), 962 (2003)MathSciNetADSCrossRefGoogle Scholar
  149. 1.149.
    Y. Nishiura, T. Teramoto, K.I. Ueda, Phys. Rev. E 67(056210) (2003)Google Scholar
  150. 1.150.
    A.M. Zhabotinsky, M. Dolnik, I.R. Epstein, J. Chem. Phys. 103(23), 10306 (1995)ADSCrossRefGoogle Scholar
  151. 1.151.
    A.W. Liehr, A.S. Moskalenko, M.C. Röttger, J. Berkemeier, H.-G. Purwins, in High Performance Computing in Science and Engineering ’02. Transactions of the High Performance Computing Center Struttgart (HLRS) 2002, ed. by E. Krause, W. Jäger (Springer, Berlin, 2003), pp. 48–61Google Scholar
  152. 1.152.
    A.W. Liehr, Dissipative Solitonen in Reaktions-Diffusions-Systemen. Dissertation, Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas W. Liehr
    • 1
  1. 1.Freiburg Materials Research CenterUniversity of FreiburgFreiburgGermany

Personalised recommendations