Advertisement

The EEM in Quantum Confined Optoelectronic Semiconductors in the Presence of Light Waves

  • Sitangshu Bhattacharya
  • Kamakhya Prasad Ghatak
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 167)

Abstract

With the advent of nanophotonics, there has been a considerable interest in studying the optical processes in semiconductors and their nanostructures. It appears from the literature that the investigations have been carried out on the assumption that the carrier energy spectra are invariant quantities in the presence of intense light waves, which is not fundamentally true. The physical properties of semiconductors in the presence of light waves which change the basic dispersion relation are relatively less investigated in the literature. In this chapter we shall study the EEM in III–V, ternary and quaternary semiconductors and their nanostructure on the basis of newly formulated electron dispersion law under external photo excitation under different physical conditions.

Keywords

Light Wave Band Model Surface Electric Field Photo Excitation Quaternary Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.K. Basu, Theory of Optical Process in Semiconductors, Bulk and Microstructures (Oxford University Press, Oxford, 1997)Google Scholar
  2. 2.
    K.P. Ghatak, S. Bhattacharya, S. Bhowmik, R. Benedictus, S. Chowdhury, J. Appl. Phys. 103, 094314 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    K.P. Ghatak, S. Bhattacharya, J. Appl. Phys. 102, 073704 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    K.P. Ghatak, S. Bhattacharya, S.K. Biswas, A. De, A.K. Dasgupta, Phys. Scr. 75, 820 (2007)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    K. Seeger, Semiconductor Physics, 6th edn. (Springer, Berlin, 1997)Google Scholar
  6. 6.
    B.R. Nag, Electron Transport in Compound Semiconductors (Springer, Berlin, 1980)Google Scholar
  7. 7.
    E.O. Kane, in Semiconductors and Semimetals, vol. 1, ed. by R.K. Willardson, A.C. Beer (Academic Press, New York, 1966), p. 75Google Scholar
  8. 8.
    B.R. Nag, Physics of Quantum Well Devices (Kluwer Academic, Dodrecht, 2000)Google Scholar
  9. 9.
    R.K. Pathria, Statistical Mechanics, 2nd edn. (Butterworth-Heinmann, Oxford, 1996)zbMATHGoogle Scholar
  10. 10.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)Google Scholar
  11. 11.
    J.N. Schulman, Y.C. Chang, Phys. Rev. B 24, 4445 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    N. Miura, Physics of Semiconductors in High Magnetic Fields, Series on Semiconductor Science and Technology (Oxford University Press, Oxford, 2007)Google Scholar
  13. 13.
    K.H.J. Buschow, F.R. de Boer, Physics of Magnetism and Magnetic Materials (Springer, New York, 2003)Google Scholar
  14. 14.
    D. Sellmyer, R. Skomski (eds.), Advanced Magnetic Nanostructures (Springer, New York, 2005)Google Scholar
  15. 15.
    J.A.C. Bland, B. Heinrich (eds.), Ultrathin Magnetic Structures III: Fundamentals of Nanomagnetism (Pt. 3) (Springer, Berlin, 2005)Google Scholar
  16. 16.
    B.K. Ridley, Quantum Processes in Semiconductors (Oxford Publications, Oxford, 1999)Google Scholar
  17. 17.
    J.H. Davies, Physics of Low Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)Google Scholar
  18. 18.
    S. Blundell, Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics (Oxford University Press, Oxford, 2001)Google Scholar
  19. 19.
    C. Weisbuch, B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Publishers, New York, 1991)Google Scholar
  20. 20.
    D. Ferry, Semiconductor Transport (CRC Press, Boca Raton, 2000)Google Scholar
  21. 21.
    M. Reed (ed.), Semiconductors and Semimetals: Nanostructured Systems (Academic Press, New York, 1992)Google Scholar
  22. 22.
    T. Dittrich, Quantum Transport and Dissipation (Wiley-VCH Verlag GmbH, Weinheim, 1998)zbMATHGoogle Scholar
  23. 23.
    A.Y. Shik, Quantum Wells: Physics and Electronics of Two dimensional Systems (World Scientific, Hackensack, 1997)Google Scholar
  24. 24.
    L.V. Keldysh, Sov. Phys. Solid State 4, 1658 (1962)Google Scholar
  25. 25.
    L. Esaki, R. Tsu, IBM J. Res. Develop. 14, 61 (1970)CrossRefGoogle Scholar
  26. 26.
    G. Bastard, Wave Mechanics Applied to Heterostructures (Editions de Physique, Les Ulis, 1990)Google Scholar
  27. 27.
    E.L. Ivchenko, G. Pikus, Superlattices and Other Heterostructures (Springer, Berlin, 1995)Google Scholar
  28. 28.
    R. Tsu, Superlattices to Nanoelectronics (Elsevier, Amsterdam, 2005)Google Scholar
  29. 29.
    P. Fürjes, C. Dücs, M. Ádám, J. Zettner, I. Bársony, Superlattices Microstruct. 35, 455 (2004)Google Scholar
  30. 30.
    T. Borca-Tasciuc, D. Achimov, W.L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, S.S. Pei, Microscale Thermophys. Eng. 5, 225 (2001)CrossRefGoogle Scholar
  31. 31.
    B.S. Williams, Nat. Photonics 1, 517 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, F. Tittel, R.F. Curl, Appl. Phys. B 90, 165 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    M.A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, Appl. Phys. Lett. 92, 201101 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    G.J. Brown, F. Szmulowicz, R. Linville, A. Saxler, K. Mahalingam, C.-H. Lin, C.H. Kuo, W.Y. Hwang, IEEE Photonics Technol. Lett. 12, 684 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    H.J. Haugan, G.J. Brown, L. Grazulis, K. Mahalingam, D.H. Tomich, Phys. E Low-Dimens. Syst. Nanostruct. 20, 527 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    S.A. Nikishin, V.V. Kuryatkov, A. Chandolu, B.A. Borisov, G.D. Kipshidze, I. Ahmad, M. Holtz, H. Temkin, Jpn. J. Appl. Phys. 42, L1362 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Y.-K. Su, H.-C. Wang, C.-L. Lin, W.-B. Chen, S.-M. Chen, Jpn. J. Appl. Phys. 42, L751 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    C.H. Liu, Y.K. Su, L.W. Wu, S.J. Chang, R.W. Chuang, Semicond. Sci. Technol. 18, 545 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    S.-B. Che, I. Nomura, A. Kikuchi, K. Shimomura, K. Kishino, Phys. Stat. Sol. (b) 229, 1001 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    C.P. Endes, F. Lewen, T.F. Giesen, S. Schleemer, D.G. Paveliev, Y.I. Koschurinov, V.M. Ustinov, A.E. Zhucov, Rev. Sci. Instrum. 78, 043106 (2007)Google Scholar
  41. 41.
    F. Klappenberger, K.F. Renk, P. Renk, B. Rieder, Y.I. Koshurinov, D.G. Pavelev, V. Ustinov, A. Zhukov, N. Maleev, A. Vasilyev, Appl. Phys. Lett. 84, 3924 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    X. Jin, Y. Maeda, T. Saka, M. Tanioku, S. Fuchi, T. Ujihara, Y. Takeda, N. Yamamoto, Y. Nakagawa, A. Mano, S. Okumi, M. Yamamoto, T. Nakanishi, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, J. Cryst. Growth 310, 5039 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    X. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda, S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, Appl. Phys. Express 1, 045002 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    B.H. Lee, K.H. Lee, S. Im, M.M. Sung, Org. Electron. 9, 1146 (2008)CrossRefGoogle Scholar
  45. 45.
    P.-H. Wu, Y.-K. Su, I.-L. Chen, C.-H. Chiou, J.-T. Hsu, W.-R. Chen, Jpn. J. Appl. Phys. 45, L647 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    A.C. Varonides, Renew. Energy 33, 273 (2008)CrossRefGoogle Scholar
  47. 47.
    M. Walther, G. Weimann, Phys. Stat. Sol. (b) 203, 3545 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, J. Ziegler, W. Cabanski, Opto-Electron. Rev. 14, 19 (2006)Google Scholar
  49. 49.
    R. Rehm, M. Walther, J. Scmitz, J. Fleissner, J. Ziegler, W. Cabanski, R. Breiter, Electron. Lett. 42, 577 (2006)CrossRefGoogle Scholar
  50. 50.
    G.J. Brown, F. Szmulowicz, H. Haugan, K. Mahalingam, S. Houston, Microelectron. J. 36, 256 (2005)CrossRefGoogle Scholar
  51. 51.
    K.V. Vaidyanathan, R.A. Jullens, C.L. Anderson, H.L. Dunlap, Solid State Electron. 26, 717 (1983)ADSCrossRefGoogle Scholar
  52. 52.
    B.A. Wilson, IEEE. J. Quantum Electron. 24, 1763 (1988)ADSCrossRefGoogle Scholar
  53. 53.
    M. Krichbaum, P. Kocevar, H. Pascher, G. Bauer, IEEE. J. Quantum Electron. 24, 717 (1988)Google Scholar
  54. 54.
    J.N. Schulman, T.C. McGill, Appl. Phys. Lett. 34, 663 (1979)ADSCrossRefGoogle Scholar
  55. 55.
    H. Kinoshita, T. Sakashita, H. Fajiyasu, J. Appl. Phys. 52, 2869 (1981)ADSCrossRefGoogle Scholar
  56. 56.
    L. Ghenin, R.G. Mani, J.R. Anderson, J.T. Cheung, Phys. Rev. B 39, 1419 (1989)ADSCrossRefGoogle Scholar
  57. 57.
    C.A. Hoffman, J.R. Mayer, F.J. Bartoli, J.W. Han, J.W. Cook, J.F. Schetzina, J.M. Schubman, Phys. Rev. B. 39, 5208 (1989)ADSCrossRefGoogle Scholar
  58. 58.
    H. Sasaki, Phys. Rev. B 30, 7016 (1984)Google Scholar
  59. 59.
    V.A. Yakovlev, Sov. Phys. Semicond. 13, 692 (1979)Google Scholar
  60. 60.
    H.X. Jiang, J.Y. Lin, J. Appl. Phys. 61, 624(1987)Google Scholar
  61. 61.
    G.M.T. Foley, P.N. Langenberg, Phys. Rev. B 15B, 4850 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sitangshu Bhattacharya
    • 1
  • Kamakhya Prasad Ghatak
    • 2
  1. 1.Department of Electronics Systems Engineering, Nano Scale Device Research LaboratoryIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations