The EEM in Inversion Layers of Non-Parabolic Semiconductors

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 167)

Abstract

It is well known that the electrons in bulk semiconductors in general, have three dimensional freedom of motion. When, these electrons are confined in a one dimensional potential well whose width is of the order of the carrier wavelength, the motion in that particular direction gets quantized while that along the other two directions remains as free.

Keywords

Fermi Energy Inversion Layer Strong Electric Field Band Model Subband Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Ando, H. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    J.J. Quinn, P.J. Styles (eds.), Electronic Properties of Quasi Two Dimensional Systems (North Holland, Amsterdam, 1976)Google Scholar
  3. 3.
    G.A. Antcliffe, R.T. Bate, R.A. Reynolds, Proceedings of the International Conference, Physics of Semi-Metals and Narrow-Gap Semiconductors ed. by D.L. Carter, R.T. Bate (Pergamon Press, Oxford, 1971), p. 499Google Scholar
  4. 4.
    Z.A. Weinberg, Sol. Stat. Electron. 20, 11 (1977)ADSCrossRefGoogle Scholar
  5. 5.
    G. Paasch, T. Fiedler, M. Kolar, I. Bartos, Phys. Stat. Sol. (b) 118, 641 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    S. Lamari, Phys. Rev. B 64, 245340 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    T. Matsuyama, R. Kürsten, C. Meißner, U. Merkt, Phys. Rev. B 61, 15588 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    P.V. Santos, M. Cardona, Phys. Rev. Lett. 72, 432 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    L. Bu, Y. Zhang, B.A. Mason, R.E. Doezema, J.A. Slinkman, Phys. Rev. B 45, 11336 (1992)Google Scholar
  10. 10.
    P.D. Dresselhaus, C.M. Papavassiliou, R.G. Wheeler, R.N. Sacks, Phys. Rev. Lett. 68, 106 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    U. Kunze, Phys. Rev. B 41, 1707 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    E. Yamaguchi, Phys. Rev. B 32, 5280 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    Th. Lindner, G. Paasch, J. Appl. Phys. 102, 054514 (2007)Google Scholar
  14. 14.
    S. Lamari, J. Appl. Phys. 91, 1698 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    K.P. Ghatak, M. Mondal, J. Appl. Phys. 70, 299 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    K.P. Ghatak, S.N. Biswas, J. Vac. Sci. Tech. 7B, 104 (1989)Google Scholar
  17. 17.
    B. Mitra, K.P. Ghatak, Sol. State Electron. 32, 177 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    K.P. Ghatak, M. Mondal, J. Appl. Phys. 62, 922 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    M. Mondal, K. P. Ghatak, J. Magnet. Magn. Mat. 62, 115 (1986)Google Scholar
  20. 20.
    M. Mondal, K.P. Ghatak, Phys. Script. 31, 613 (1985)Google Scholar
  21. 21.
    K.P. Ghatak, M. Mondal, Z. fur Physik B 64, 223 (1986)Google Scholar
  22. 22.
    K.P. Ghatak, S.N. Biswas, Sol. State Electron. 37, 1437 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sitangshu Bhattacharya
    • 1
  • Kamakhya Prasad Ghatak
    • 2
  1. 1.Department of Electronics Systems Engineering, Nano Scale Device Research LaboratoryIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations