Advertisement

The EEM in Nipi Structures of Nonparabolic Semiconductors

  • Sitangshu Bhattacharya
  • Kamakhya Prasad Ghatak
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 167)

Abstract

The concept of doping SLs was introduced by Esaki and Tsu [1] and extensive work in this subject was initiated by Dohler [2–15] . In the compositional SL the periodic potential is due to a change in the band gap of two materials. In doping SLs, the periodicity is space-charge induced and in addition a homogeneous material is used. With the advent of modern experimental techniques of fabricating nanomaterials, it is possible to grow semiconductor superlattices (SLs) composed of alternative layers of two different degenerate layers with controlled thickness.

Keywords

Fermi Energy Nonlinear Optical Material Crystal Field Splitting Subband Energy Superlattice Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970)Google Scholar
  2. 2.
    G.H. Döhler, Phys. Status Solidi B 52, 79 (1972)Google Scholar
  3. 3.
    G.H. Döhler, Phys. Status Solidi B 52, 533 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    G.H. Döhler, Surf. Sci. 73, 97 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    G.H. Döhler, J. Vac. Sci. Technol. 16, 851 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    G.H. Döhler, K. Ploog, Prog. Cryst. Growth Charact. 2, 145 (1979)CrossRefGoogle Scholar
  7. 7.
    G.H. Döhler, H. Künzel, K. Ploog, Phys. Rev. B 25, 2616 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    H. Künzel, G.H. Döhler, A. Fischer, K. Ploog, Appl. Phys. Lett. 38, 171 (1980)CrossRefGoogle Scholar
  9. 9.
    G.H. Döhler, H. Künzel, D. Olego, K. Ploog, P. Ruden, H.J. Stolz, Phys. Rev. Lett. 47, 864 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    K. Ploog, H. Künzel, J. Knecht, A. Fischer, G.H. Döhler, Appl. Phys. Lett. 38, 870 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    K. Ploog, A. Fischer, H. Künzel, J. Electrochem. Soc. 128, 400 (1981)CrossRefGoogle Scholar
  12. 12.
    H. Jung, G.H. Döhler, H. Kunzel, K. Ploog, P. Ruden, H.J. Stolz, Solid State Commun. 43, 291 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    H. Künzel, G.H. Döhler, P. Ruden, K. Ploog, Appl. Phys. Lett. 41, 852 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    N.G. Anderson, W.D. Laidig, R.M. Kolbas, Y.C. Lo, J. Appl. Phys. 60, 2361 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    F. Capasso, Semiconduct. Semimet. 22, 2 (1985)Google Scholar
  16. 16.
    F. Capasso, K. Mohammed, A.Y. Cho, R. Hull, A.L. Hutchinson, Appl. Phys. Lett. 47, 420 (1985)Google Scholar
  17. 17.
    F. Capasso, R.A. Kiehl, J. Appl. Phys. 58, 1366 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    K. Ploog, G.H. Doheler, Adv. Phys. 32, 285 (1983)Google Scholar
  19. 19.
    F. Capasso, K. Mohammed, A.Y. Cho, Appl. Phys. Lett. 478, (1986)Google Scholar
  20. 20.
    R. Grill, C. Metzner, G.H. Döhler, Phys. Rev. B 63, 235316 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    J.Z. Wang, Z.G. Wang, Z.M. Wang, S.L. Feng, Z. Yang, Phys. Rev. B 62, 6956 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    J.Z. Wang, Z.G. Wang, Z.M. Wang, S.L. Feng, Z. Yang, Phys. Rev. B 61, 15614 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    A.R. Kost, M.H. Jupina, T.C. Hasenberg, E.M. Garmire, J. Appl. Phys. 99, 023501 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    A.G. Smirnov, D.V. Ushakov, V.K. Kononenko, Proc. SPIE 4706, 70 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    D.V. Ushakov, V.K. Kononenko, I.S. Manak, Proc. SPIE 4358, 171 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    J.Z. Wang, Z.G. Wang, Z.M. Wang, S.L. Feng, Z. Yang, Phys. Rev. B 62, 6956 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    A.R. Kost, L. West, T.C. Hasenberg, J.O. White, M. Matloubian, G.C. Valley, Appl. Phys. Lett. 63, 3494 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    S. Bastola, S.J. Chua, S.J. Xu, J. Appl. Phys. 83, 1476 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Z.J. Yang, E.M. Garmire, D. Doctor, J. Appl. Phys. 82, 3874 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    G.H. Avetisyan, V.B. Kulikov, I.D. Zalevsky, P.V. Bulaev, Proc. SPIE 2694, 216 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    U. Pfeiffer, M. Kneissl, B. Knüpfer, N. Müller, P. Kiesel, G.H. Döhler, J.S. Smith, Appl. Phys. Lett. 68, 1838 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    H.L. Vaghjiani, E.A. Johnson, M.J. Kane, R. Grey, C.C. Phillips, J. Appl. Phys. 76, 4407 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    P. Kiesel, K.H. Gulden, A. Hoefler, M. Kneissl, B. Knuepfer, S.U. Dankowski, P. Riel, X.X. Wu, J.S. Smith, G.H. Doehler, Proc. SPIE 1985, 278 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    P.K. Basu, Theory of Optical Process in Semiconductors: Bulk and Microstructures (Oxford University Press, Oxford 1997)Google Scholar
  35. 35.
    G.H. Doheler, Phys. Scr. 24, 430 (1981)Google Scholar
  36. 36.
    S. Mukherjee, S.N. Mitra, P.K. Bose, A.R. Ghatak, A. Neoigi, J.P. Banerjee, A. Sinha, M. Pal, S. Bhattacharya, K.P. Ghatak, J. Comput. Theor. Nanosci. 4, 550 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sitangshu Bhattacharya
    • 1
  • Kamakhya Prasad Ghatak
    • 2
  1. 1.Department of Electronics Systems Engineering, Nano Scale Device Research LaboratoryIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations