Advertisement

The EEM in Ultrathin Films (UFs) of Nonparabolic Semiconductors

  • Sitangshu Bhattacharya
  • Kamakhya Prasad Ghatak
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 167)

Abstract

The concept of the effective mass of the carriers in semiconductors is one of the basic pillars in the realm of solid state and related sciences [1]. It must be noted that among the various definitions of the effective electron mass (e.g effective acceleration mass, density-of-state effective mass, concentration effective mass, conductivity effective mass, Faraday rotation effective mass, etc) [2], it is the effective momentum mass that should be regarded as the basic quantity [3]. This is due to the fact that it is this mass which appears in the description of transport phenomena and all other properties of the conduction electrons in a semiconductor with arbitrary band nonparabolicity [3]. It can be shown that it is the effective momentum mass which enters in various transport coefficients and plays the most dominant role in explaining the experimental results of different scattering mechanisms through Boltzmann’s transport equation [4,5]. The carrier degeneracy in semiconductors influences the effective mass when it is energy dependent.

Keywords

Dispersion Relation Fermi Energy Ultrathin Film Bulk Specimen Negative Refractive Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Adachi, J. Appl. Phys. 58, R11 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    R. Dornhaus, G. Nimtz, Springer Tracts in Modern Physics, vol. 78 (Springer, Berlin, 1976), p. 1Google Scholar
  3. 3.
    W. Zawadzki, Handbook of Semiconductor Physics, vol. 1, ed. by W. Paul (North Holland, Amsterdam, 1982), p 719Google Scholar
  4. 4.
    I.M. Tsidilkovski, Cand. Thesis Leningrad University SSR (1955)Google Scholar
  5. 5.
    F.G. Bass, I.M. Tsidilkovski, Ivz. Acad. Nauk Azerb SSR 10, 3 (1966)Google Scholar
  6. 6.
    B. Mitra, K.P. Ghatak, Phys. Scr. 40, 776 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    S.K. Biswas, A.R. Ghatak, A. Neogi, A. Sharma, S. Bhattacharya, K.P. Ghatak, Phys. E 36, 163 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Mondal, S. Banik, K.P. Ghatak, J. Low Temp. Phys. 74, 423 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    K.P. Ghatak, S. Bhattacharya, H. Saikia, A. Sinha, J. Comp. Theor. Nanosci. 3, 1 (2006)Google Scholar
  10. 10.
    K.P. Ghatak, S.N. Biswas, J. Vac. Sci. Tech. 7B, 104 (1989)Google Scholar
  11. 11.
    P.K. Chakraborty, S. Choudhury, K.P. Ghatak, Phys. B 387, 333 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    S. Bhattacharya, S. Pahari, D.K. Basu, K.P. Ghatak, J. Comp. Theor. Nanosci. 3, 280 (2006)Google Scholar
  13. 13.
    A. Sinha, A.K. Sharma, R. Barui, A.R. Ghatak, S. Bhattacharya, K.P. Ghatak, Phys. B 391, 141 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S. Choudhury, L.J. Singh, K.P. Ghatak, Nanotechnology 15, 180 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    S. Chowdhary, L.J. Singh, K.P. Ghatak, Phys. B B365, 5 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    P.K. Chakraborty, A. Sinha, S. Bhattacharya, K.P. Ghatak, Phys. B 390, 325 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    K.P. Ghatak, J.P. Banerjee, D. Bhattacharyya, Nanotechnology 7, 110 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    P.K. Chakraborty, B. Nag, K.P. Ghatak, J. Phys. Chem. Solids 64, 2191 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    K.P. Ghatak, J.P. Banerjee, B. Nag, J. Appl. Phys. 83, 1420 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    B. Nag, K.P. Ghatak, J. Phys. Chem. Solids 59, 713 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    P.K. Chakraborty, B. Nag, K.P. Ghatak, J. Phys. Chem. Solids 64, 2191 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    P.K. Chakraborty, K.P. Ghatak, Phys. Lett. 288, 335 (2001)CrossRefGoogle Scholar
  23. 23.
    P.K. Chakraborty, K.P. Ghatak, J. Phys. Chem. Sol. 62, 1061 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    P.K. Chakraborty, K.P. Ghatak, J. Phys. D Appl. Phys. 32, 2438 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    B. Nag, K.P. Ghatak, J. Phys. Chem. Solids 58, 427 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    K.P. Ghatak, D.K. Basu, B. Nag, J. Phys. Chem. Solids 58, 133 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    B. Nag, K.P. Ghatak, Nonlinear Opt. Quantum Opt. 19, 1 (1998)Google Scholar
  28. 28.
    K.P. Ghatak, B. Nag, Nanostruct. Mat. 10, 923 (1998)CrossRefGoogle Scholar
  29. 29.
    K.P. Ghatak, B. Nag, D. Bhattacharyya, J. Low Temp. Phys. 14, 1 (1995)CrossRefGoogle Scholar
  30. 30.
    M. Mondal, K.P. Ghatak, Phys. Scr. 30, 217 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    M. Mondal, K.P. Ghatak, J. Magn. Magn. Mat. 62, 115 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    M. Mondal, K.P. Ghatak, Thin Solid Films 148, 219 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    K.P. Ghatak, A.K. Choudhury, S. Ghosh, A.N. Chakravarti, Appl. Phys. 23, 241 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    M. Mondal, N. Chattopadhyay, K.P. Ghatak, J. Low Temp, J. Low Temp. Phys. 73, 321 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    K.P. Ghatak, N. Chattopadhyay, M. Mondal, Appl. Phys. A 44, 305 (1987)ADSCrossRefGoogle Scholar
  36. 36.
    B. Mitra, K.P. Ghatak, Phys. Lett. 135A, 397 (1989)ADSGoogle Scholar
  37. 37.
    B. Mitra, K.P. Ghatak, Solid State Electron. 32, 810 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    B. Mitra, K.P. Ghatak, Phys. Scr. 42, 103 (1990)ADSCrossRefGoogle Scholar
  39. 39.
    K.P. Ghatak, M. Mondal, Z.F. Naturforschung 41A, 821 (1986)Google Scholar
  40. 40.
    A.N. Chakravarti, A.K. Choudhury, K.P. Ghatak, S. Ghosh, A. Dhar, Appl. Phys. 25, 105 (1981)ADSCrossRefGoogle Scholar
  41. 41.
    K.P. Ghatak, M. Mondal, Z.F. Phys. B B69, 471 (1988)Google Scholar
  42. 42.
    A.N. Chakravarti, K.P. Ghatak, K.K. Ghosh, S. Ghosh, A. Dhar, Z.F. Phys. B 47, 149 (1982)Google Scholar
  43. 43.
    H.A. Lyden, Phys. Rev. 135, A514 (1964)ADSCrossRefGoogle Scholar
  44. 44.
    E.D. Palik, G.B. Wright, in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer, vol. 3. (Academic Press, New York, 1967), p. 421Google Scholar
  45. 45.
    H.L. Stomer, R. Dingle, A.C. Gossard, W. Wiegmann, M.D. Sturge, Solid State Commun. 29, 705 (1979)ADSCrossRefGoogle Scholar
  46. 46.
    D.C. Rogers, J. Singleton, R.J. Nicholas, C.T. Foxon, in High Magnetic Fields in Semiconductor Physics, ed. by G. Landwehr, Springer Series in Solid-State Sciences, vol. 71. (Springer, Berlin, 1987), p. 223Google Scholar
  47. 47.
    M. Potemski, J.C. Maan, K. Pllog, G. Weimann, Solid State Commun. 75, 185 (1990)ADSCrossRefGoogle Scholar
  48. 48.
    B.C. Cavenett, E.J. Pakulis, Phys. Rev. B 32, 8449 (1985)ADSCrossRefGoogle Scholar
  49. 49.
    C. Wetzel, Al.L. Efros, A. Moll, B.K. Meyer, P. Omling, P. Sobkowicz. Phys. Rev. B 45, 14052 (1992)Google Scholar
  50. 50.
    G. Hendorfer, M. Seto, H. Ruckser, W. Jantsch, M. Helm, G. Brunthaler, W. Jost, H. Obloh, K. Kohler, D.J. As, Phys. Rev. B 48, 2328 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    Q.X. Zhao, P.O. Holtz, B. Monemar, T. Lundstrom, J. Wallin, G. Landgren, Phys. Rev. B 48(11), 890 (1983)Google Scholar
  52. 52.
    U. Ekenberg, Phys. Rev. B 36, 6152 (1987)ADSCrossRefGoogle Scholar
  53. 53.
    H.I. Zhang, Phys. Rev. B 1, 3450 (1970)ADSCrossRefGoogle Scholar
  54. 54.
    Y. Zhang, A. Mascarenhas, H.P. Xin, C.W. Tu, Phys. Rev. B 61, 7479 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    P.N. Hai, W.M. Chen, I.A. Buyanova, H.P. Xin, C.W. Tu, Appl. Phys. Lett. 77, 1843 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    J. Wu, W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H.P. Xin, C.W. Tu, Phys. Rev. B 64, 085320 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    D.L. Young, D.L. Geisz, T.J. Coutts, Appl. Phys. Lett. 82, 1236 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    Y.J. Wang, X. Wei, Y. Zhang, A. Mascarenhas, H.P. Xin, Y.G. Hong, C.W. Tu, Appl. Phys. Lett. 82, 4453 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    F. Masia, A. Polimeni, G. Baldassarri Höger von Högersthal, M. Bissiri, M. Capizzi, P.J. Klar, W. Stolz, Appl. Phys. Lett. 82, 4474 (2003)Google Scholar
  60. 60.
    A. Polimeni, G. Baldassarri Höger von Högersthal, F. Masia, A. Frova, M. Capizzi, S. Sanna, V. Fiorentini, P.J. Klar, W. Stolz, Phys. Rev. B 69, 041201(R) (2004)Google Scholar
  61. 61.
    G. Baldassarri Höger von Högersthal, A. Polimeni, F. Masia, M. Bissiri, M. Capizzi, D. Gollub, M. Fischer, A. Forchel, Phys. Rev. B 67, 233304 (2003)Google Scholar
  62. 62.
    M. Mondal, K.P. Ghatak, Phys. Lett. 131 A, 529 (1988)Google Scholar
  63. 63.
    K.P. Ghatak, B. Mitra, Int. J. Electron. 72, 541 (1992)CrossRefGoogle Scholar
  64. 64.
    B. Mitra, A. Ghoshal, K.P. Ghatak, Nouvo Cimento D 12D, 891 (1990)ADSGoogle Scholar
  65. 65.
    K.P. Ghatak, S.N. Biswas, Nonlinear Opt. Quantum Opt. 4, 347 (1993)Google Scholar
  66. 66.
    K.P. Ghatak, S.N. Biswas, Nonlinear Opt. Quantum Opt. 12, 83 (1995)Google Scholar
  67. 67.
    V. Milanovic, D. Tjapkin, Phys. B and C 114(3), 375(1982)Google Scholar
  68. 68.
    Z.S. Gribnikov, K. Hess, G.A. Kosinovsky, J. Appl. Phys. 7(4), 1337 (1995)ADSCrossRefGoogle Scholar
  69. 69.
    M. Dyakonov, M.S. Shur, J. Appl. Phys. 84(7), 3726 (1998)ADSCrossRefGoogle Scholar
  70. 70.
    K.P. Ghatak, A. Ghoshal, B. Mitra, Nouvo Cimento 14D, 903 (1992)Google Scholar
  71. 71.
    K.P. Ghatak, A. Ghoshal, B. Mitra, Nouvo Cimento 13D, 867 (1991)ADSGoogle Scholar
  72. 72.
    B. Mitra, K.P. Ghatak, Solid State Electron. 32, 177 (1989)ADSCrossRefGoogle Scholar
  73. 73.
    M. Mondal, N. Chattapadhyay, K.P. Ghatak, J. Low Temp. Phys. 66, 131 (1987)ADSCrossRefGoogle Scholar
  74. 74.
    D.P. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984)ADSCrossRefGoogle Scholar
  75. 75.
    P. Perlin, E. Litwin-Staszewska, B. Suchanek, W. Knap, J. Camassel, T. Suski, R. Piotrzkowski, I. Grzegory, S. Porowski, E. Kaminska, J.C. Chervin, Appl. Phys. Lett. 68, 1114 (1996)ADSCrossRefGoogle Scholar
  76. 76.
    G.E. Smith, Phys. Rev. Lett. 9, 487 (1962)ADSCrossRefGoogle Scholar
  77. 77.
    D. Schneider, D. Rurup, A. Plichta, H.-U. Grubert, A. Schlachetzki, K. Hansen, Z. Phys. B 95, 281 (1994)ADSCrossRefGoogle Scholar
  78. 78.
    F. Masia, G. Pettinari, A. Polimeni, M. Felici, A. Miriametro, M. Capizzi, A. Lindsay, S.B. Healy, E.P. O’Reilly, A. Cristofoli, G. Bais, M. Piccin, S. Rubini, F. Martelli, A. Franciosi, P.J. Klar, K. Volz, W. Stolz, Phys. Rev. B 73, 073201 (2006)ADSCrossRefGoogle Scholar
  79. 79.
    V.K. Arora, H. Jeafarian, Phys. Rev. B 13, 4457 (1976)ADSCrossRefGoogle Scholar
  80. 80.
    S.E. Ostapov, V.V. Zhikharevich, V.G. Deibuk, Semicond. Phys. Quantum Electron. Optoelectron. 9, 29 (2006)Google Scholar
  81. 81.
    M.J. Aubin, L.G. Caron, J.-P. Jay- Gerin, Phys. Rev. B 15, 3872 (1977)ADSCrossRefGoogle Scholar
  82. 82.
    S.L. Sewall, R.R. Cooney, P. Kambhampati, Appl. Phys. Lett. 94, 243116 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    K. Tanaka, N. Kotera, in 20th International Conference on Indium Phosphide and Related Materials, Versailles, France, 25–29 May 2008, pp. 1–4Google Scholar
  84. 84.
    M. Singh, P.R. Wallace, S.D. Jog, J. Erushanov, J. Phys. Chem. Solids 45, 409 (1984)ADSCrossRefGoogle Scholar
  85. 85.
    W. Zawadski, Adv. Phys. 23, 435 (1974)ADSCrossRefGoogle Scholar
  86. 86.
    P.M. Petroff, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984)ADSCrossRefGoogle Scholar
  87. 87.
    J.M. Gaines, P.M. Petroff, H. Kroemar, R.J. Simes, R.S. Geels, J.H. English, J. Vac. Sci. Technol. B 6, 1378 (1988)ADSCrossRefGoogle Scholar
  88. 88.
    J. Cilbert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard, J.H. English, Appl. Phys. Lett. 49, 1275 (1986)ADSCrossRefGoogle Scholar
  89. 89.
    T. Fujui, H. Saito, Appl. Phys. Lett. 50, 824 (1987)ADSCrossRefGoogle Scholar
  90. 90.
    H. Sasaki, Jpn. J. Appl. Phys. 19, 94 (1980)Google Scholar
  91. 91.
    P.M. Petroff, A.C. Gossard, R.A. Logan, W. Weigmann, Appl. Phys. Lett. 41, 635 (1982)ADSCrossRefGoogle Scholar
  92. 92.
    H. Temkin, G.J. Dolan, M.B. Panish, S.N.G. Chu, Appl. Phys. Lett. 50, 413 (1988)ADSCrossRefGoogle Scholar
  93. 93.
    I. Miller, A. Miller, A. Shahar, U. Koren, P.J. Corvini, Appl. Phys. Lett. 54, 188 (1989)ADSCrossRefGoogle Scholar
  94. 94.
    L.L. Chang, H. Esaki, C.A. Chang, L. Esaki, Phys. Rev. Lett. 38, 1489 (1977)ADSCrossRefGoogle Scholar
  95. 95.
    K. Less, M.S. Shur, J.J. Drunnond, H. Morkoc, IEEE Trans. Electron. Devices ED-30, 07 (1983)Google Scholar
  96. 96.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Halsted, Les Ulis, Les Editions de Physique, New York, 1988)Google Scholar
  97. 97.
    M.J. Kelly, Low dimensional semiconductors: materials, physics, technology, devices (Oxford University Press, Oxford, 1995)Google Scholar
  98. 98.
    C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Boston Academic Press, Boston, 1991)Google Scholar
  99. 99.
    N.T. Linch, Festkorperprobleme 23, 27 (1985)Google Scholar
  100. 100.
    D.R. Sciferes, C. Lindstrom, R.D. Burnham, W. Streifer, T.L. Paoli, Electron. Lett. 19, 170 (1983)Google Scholar
  101. 101.
    P.M. Solomon, Proc. IEEE 70, 489 (1982)CrossRefGoogle Scholar
  102. 102.
    T.E. Schlesinger, T. Kuech, Appl. Phys. Lett. 49, 519 (1986)ADSCrossRefGoogle Scholar
  103. 103.
    D. Kasemet, C.S. Hong, N.B. Patel, P.D. Dapkus, Appl. Phys. Lett. 41, 912 (1982)ADSCrossRefGoogle Scholar
  104. 104.
    K. Woodbridge, P. Blood, E.D. Pletcher, P.J. Hulyer, Appl. Phys. Lett. 45, 16 (1984)ADSCrossRefGoogle Scholar
  105. 105.
    S. Tarucha, H.O. Okamoto, Appl. Phys. Lett. 45, 16 (1984)CrossRefGoogle Scholar
  106. 106.
    H. Heiblum, D.C. Thomas, C.M. Knoedler, M.I. Nathan, Appl. Phys. Lett. 47, 1105 (1985)ADSCrossRefGoogle Scholar
  107. 107.
    O. Aina, M. Mattingly, F.Y. Juan, P.K. Bhattacharyya, Appl. Phys. Lett. 50, 43 (1987)ADSCrossRefGoogle Scholar
  108. 108.
    I. Suemune, L.A. Coldren, IEEE J. Quant. Electron. 24, 1178 (1988)CrossRefGoogle Scholar
  109. 109.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, J.H. Wood, A.C. Burrus, A.C. Gossard, W. Weigmann, IEEE J. Quant. Electron. 21, 1462 (1985)ADSCrossRefGoogle Scholar
  110. 110.
    J.W. Rowe, J.L. Shay, Phys. Rev. B 3, 451 (1973)ADSCrossRefGoogle Scholar
  111. 111.
    H. Kildal, Phys. Rev. B 10, 5082 (1974)ADSCrossRefGoogle Scholar
  112. 112.
    J. Bodnar, in Proceedings of the International Conference on Physics of Narrow-gap Semiconductors (Polish Science Publishers, Warsaw, 1978)Google Scholar
  113. 113.
    G.P. Chuiko, N.N. Chuiko, Sov. Phys. Semicond. 15, 739 (1981)Google Scholar
  114. 114.
    K.P. Ghatak, S.N. Biswas, Proc. SPIE 1484, 149 (1991)ADSCrossRefGoogle Scholar
  115. 115.
    A. Rogalski, J. Alloys Comp. 371, 53 (2004)CrossRefGoogle Scholar
  116. 116.
    A. Baumgartner, A. Chaggar, A. Patanè, L. Eaves, M. Henini, Appl. Phys. Lett. 92, 091121 (2008)ADSCrossRefGoogle Scholar
  117. 117.
    J. Devenson, R. Teissier, O. Cathabard, A.N. Baranov, Proc. SPIE 6909, 69090U (2008)ADSCrossRefGoogle Scholar
  118. 118.
    B.S. Passmore, J. Wu, M.O. Manasreh, G.J. Salamo, Appl. Phys. Lett. 91, 233508 (2007)ADSCrossRefGoogle Scholar
  119. 119.
    M. Mikhailova, N. Stoyanov, I. Andreev, B. Zhurtanov, S. Kizhaev, E. Kunitsyna, K. Salikhov, Y. Yakovlev, Proc. SPIE 6585, 658526 (2007)CrossRefGoogle Scholar
  120. 120.
    W. Kruppa, J.B. Boos, B.R. Bennett, N.A. Papanicolaou, D. Park, R. Bass, Electron. Lett. 42, 688 (2006)CrossRefGoogle Scholar
  121. 121.
    E.O. Kane, in Semiconductors and Semimetals, vol. 1, ed. by R.K. Willardson, A.C. Beer (Academic Press, New York, 1966), p. 75Google Scholar
  122. 122.
    B.R. Nag, Electron Transport in Compound Semiconductors (Springer, Heidelberg, 1980)Google Scholar
  123. 123.
    G.E. Stillman, C.M. Wolfe, J.O. Dimmock, in Semiconductors and Semimetals, vol. 12, ed. by R.K. Willardon, A.C. Beer (Academic Press, New York, 1977), p. 169Google Scholar
  124. 124.
    D.J. Newson, A. Karobe, Semicond. Sci. Tech. 3, 786 (1988)ADSCrossRefGoogle Scholar
  125. 125.
    E.D. Palik, G.S. Picus, S. Teither, R.E. Wallis, Phys. Rev. 122, 475 (1961)ADSCrossRefGoogle Scholar
  126. 126.
    P.Y. Lu, C.H. Wung, C.M. Williams, S.N.G. Chu, C.M. Stiles, Appl. Phys. Lett. 49, 1372 (1986)ADSCrossRefGoogle Scholar
  127. 127.
    N.R. Taskar, I.B. Bhat, K.K. Prat, D. Terry, H. Ehasani, S.K. Ghandhi, J. Vac. Sci. Tech. 7A, 281 (1989)ADSGoogle Scholar
  128. 128.
    F. Koch, Springer Series in Solid States Sciences (Springer, Germany, 1984)Google Scholar
  129. 129.
    L.R. Tomasetta, H.D. Law, R.C. Eden, I. Reyhimy, K. Nakano, IEEE J. Quant. Electron. 14, 800 (1978)ADSCrossRefGoogle Scholar
  130. 130.
    T. Yamato, K. Sakai, S. Akiba, Y. Suematsu, IEEE J. Quantum Electron. 14, 95 (1978)ADSCrossRefGoogle Scholar
  131. 131.
    T.P. Pearsall, B.I. Miller, R.J. Capik, Appl. Phys. Lett. 28, 499 (1976)ADSCrossRefGoogle Scholar
  132. 132.
    M.A. Washington, R.E. Nahory, M.A. Pollack, E.D. Beeke, Appl. Phys. Lett. 33, 854 (1978)ADSCrossRefGoogle Scholar
  133. 133.
    M.I. Timmons, S.M. Bedair, R.J. Markunas, J.A. Hutchby, in Proceedings of the 16th IEEE Photovoltaic Specialist Conference (IEEE, San Diego, California 666, 1982)Google Scholar
  134. 134.
    J.A. Zapien, Y.K. Liu, Y.Y. Shan, H. Tang, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 90, 213114 (2007)ADSCrossRefGoogle Scholar
  135. 135.
    M. Park, Proc. SPIE 2524, 142 (1995)ADSCrossRefGoogle Scholar
  136. 136.
    S.-G. Hur, E.T. -Kim, J. H. -Lee, G.H. -Kim, S.G. -Yoon, Electrochem. Solid-State Lett. 11, H176 (2008)Google Scholar
  137. 137.
    H. Kroemer, Rev. Mod. Phys. 73, 783 (2001)ADSCrossRefGoogle Scholar
  138. 138.
    T. Nguyen Duy, J. Meslage, G. Pichard, J. Crys. Growth 72, 490 (1985)ADSCrossRefGoogle Scholar
  139. 139.
    T. Aramoto, F. Adurodija, Y. Nishiyama, T. Arita, A. Hanafusa, K. Omura, A. Morita, Solar Energy Mater. Solar Cells 75, 211 (2003)CrossRefGoogle Scholar
  140. 140.
    H.B. Barber, J. Electron. Mater. 25, 1232 (1996)ADSCrossRefGoogle Scholar
  141. 141.
    S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi, M. Ikeda, Electron. Lett. 32, 552 (1996)CrossRefGoogle Scholar
  142. 142.
    J.J. Hopfield, J. Appl. Phys. 32, 2277 (1961)ADSCrossRefGoogle Scholar
  143. 143.
    R.V. Belosludov, A.A. Farajian, H. Mizuseki, K. Miki, Y. Kawazoe, Phys. Rev. B 75, 113411 (2007)ADSCrossRefGoogle Scholar
  144. 144.
    J. Heremans, C.M. Thrush, Y.-M Lin, S. Cronin, Z. Zhang, M.S. Dresselhaus, J.F. Mansfield, Phys. Rev. B 61, 2921 (2000)Google Scholar
  145. 145.
    D. Shoenberg, Proc. R. Soc. (London) 170, 341 (1939)ADSzbMATHCrossRefGoogle Scholar
  146. 146.
    B. Abeles, S. Meiboom, Phys. Rev. 101, 544 (1956)ADSCrossRefGoogle Scholar
  147. 147.
    B. Lax, J.G. Mavroides, H.J. Zieger, R.J. Keyes, Phys. Rev. Lett. 5, 241 (1960)ADSCrossRefGoogle Scholar
  148. 148.
    Y.-H. Kao, Phys. Rev. 129, 1122 (1963)ADSCrossRefGoogle Scholar
  149. 149.
    R.J. Dinger, A.W. Lawson, Phys. Rev. B 3, 253 (1971)ADSCrossRefGoogle Scholar
  150. 150.
    J.F. Koch, J.D. Jensen, Phys. Rev. 184, 643 (1969)ADSCrossRefGoogle Scholar
  151. 151.
    M.H. Cohen, Phys. Rev. 121, 387 (1961)ADSzbMATHCrossRefGoogle Scholar
  152. 152.
    S. Takaoka, H. Kawamura, K. Murase, S. Takano, Phys. Rev. B 13, 1428 (1976)ADSCrossRefGoogle Scholar
  153. 153.
    J.W. McClure, K.H. Choi, Solid State Commun. 21, 1015 (1977)ADSCrossRefGoogle Scholar
  154. 154.
    G.P. Agrawal, N.K. Dutta, Semicond. Lasers (Van Nostrand Reinhold, New York, 1993)Google Scholar
  155. 155.
    S. Chatterjee, U. Pal, Opt. Eng. (Bellingham), 32, 2923 (1993)Google Scholar
  156. 156.
    T.K. Chaudhuri, Int. J. Energy Res. 16, 481 (1992)CrossRefGoogle Scholar
  157. 157.
    J.H. Dughaish, Phys. B 322, 205 (2002)ADSCrossRefGoogle Scholar
  158. 158.
    C. Wood, Rep. Prog. Phys. 51, 459 (1988)ADSCrossRefGoogle Scholar
  159. 159.
    K.-F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818 (2004)ADSCrossRefGoogle Scholar
  160. 160.
    J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, T. Hogan, M.G. Kanatzidis, Adv. Mater. 18, 1170 (2006)CrossRefGoogle Scholar
  161. 161.
    P.F.P. Poudeu, J.D’Angelo, A.D. Downey, J.L. Short, T.P. Hogan, M.G. Kanatzidis, Angew. Chem. Int. Ed. 45, 3835 (2006)Google Scholar
  162. 162.
    P.F. Poudeu, J. D’Angelo, H. Kong, A. Downey, J.L. Short, R. Pcionek, T.P. Hogan, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 128, 14347 (2006)CrossRefGoogle Scholar
  163. 163.
    J.R. Sootsman, R.J. Pcionek, H. Kong, C. Uher, M.G. Kanatzidis, Chem. Mater. 18, 4993 (2006)CrossRefGoogle Scholar
  164. 164.
    A.J. Mountvala, G. Abowitz, J. Am. Ceram. Soc. 48, 651 (1965)CrossRefGoogle Scholar
  165. 165.
    E.I. Rogacheva, I.M. Krivulkin, O.N. Nashchekina, AYu. Sipatov, V.A. Volobuev, M.S. Dresselhaus, Appl. Phys. Lett. 78, 3238 (2001)Google Scholar
  166. 166.
    H.S. Lee, B. Cheong, T.S. Lee, K.S. Lee, W.M. Kim, J.W. Lee, S.H. Cho, J.Y. Huh, Appl. Phys. Lett. 85, 2782 (2004)ADSCrossRefGoogle Scholar
  167. 167.
    K. Kishimoto, M. Tsukamoto, T. Koyanagi, J. Appl. Phys. 92, 5331 (2002)ADSCrossRefGoogle Scholar
  168. 168.
    E.I. Rogacheva, O.N. Nashchekina, S.N. Grigorov, M.A. Us, M.S. Dresselhaus, S.B. Cronin, Nanotechnology 14, 53 (2003)ADSCrossRefGoogle Scholar
  169. 169.
    E.I. Rogacheva, O.N. Nashchekina, A.V. Meriuts, S.G. Lyubchenko, M.S. Dresselhaus, G. Dresselhaus, Appl. Phys. Lett. 86, 063103 (2005)ADSCrossRefGoogle Scholar
  170. 170.
    E.I. Rogacheva, S.N. Grigorov, O.N. Nashchekina, T.V. Tavrina, S.G. Lyubchenko, AYu. Sipatov, V.V. Volobuev, A.G. Fedorov, M.S. Dresselhaus, Thin Solid Bodies 493, 41 (2005)Google Scholar
  171. 171.
    X. Qiu, Y. Lou, A.C.S. Samia, A. Devadoss, J.D. Burgess, S. Dayal, C. Burda, Angew. Chem. Int. Ed. 44, 5855 (2005)Google Scholar
  172. 172.
    C. Wang, G. Zhang, S. Fan, Y. Li, J. Phys. Chem. Solids 62, 1957 (2001)ADSCrossRefGoogle Scholar
  173. 173.
    B. Poudel, W.Z. Wang, D.Z. Wang, J.Y. Huang, Z.F. Ren, J. Nanosci. Nanotechnol. 6, 1050 (2006)CrossRefGoogle Scholar
  174. 174.
    B. Zhang, J. He, T.M. Tritt, Appl. Phys. Lett. 88, 043119 (2006)ADSCrossRefGoogle Scholar
  175. 175.
    W. Heiss, H. Groiss, E. Kaufmann, G. Hesser, M. Böberl, G. Springholz, F. Schäffler, K. Koike, H. Harada, M. Yano, Appl. Phys. Lett. 88, 192109 (2006)ADSCrossRefGoogle Scholar
  176. 176.
    B.A. Akimov, V.A. Bogoyavlenskiy, L.I. Ryabova, V.N. Vasil’kov, Phys. Rev. B 61, 16045 (2000)ADSCrossRefGoogle Scholar
  177. 177.
    Ya. A. Ugai, A.M. Samoilov, M.K. Sharov, O.B. Yatsenko, B.A. Akimov, Inorg. Mater. 38, 12 (2002)Google Scholar
  178. 178.
    Ya. A. Ugai, A.M. Samoilov, S.A. Buchnev, Yu. V. Synorov, M.K. Sharov, Inorg. Mater. 38, 450 (2002)Google Scholar
  179. 179.
    A.M. Samoilov, S.A. Buchnev, YuV Synorov, B.L. Agapov, A.M. Khoviv. Inorg. Mater. 39, 1132 (2003)Google Scholar
  180. 180.
    A.M. Samoilov, S.A. Buchnev, E.A. Dolgopolova, YuV Synorov, A.M. Khoviv, Inorg. Mater. 40, 349 (2004)Google Scholar
  181. 181.
    H. Murakami, W. Hattori, R. Aoki, Phys. C 269, 83 (1996)ADSCrossRefGoogle Scholar
  182. 182.
    H. Murakami, W. Hattori, Y. Mizomata, R. Aoki, Phys. C 273, 41 (1996)ADSCrossRefGoogle Scholar
  183. 183.
    H. Murakami, R. Aoki, K. Sakai, Thin Solid Bodies 27, 343 (1999)Google Scholar
  184. 184.
    B.A. Volkov, L.I. Ryabova, D.R. Khokhlov, Phys. Usp. 45, 819 (2002), and references thereinGoogle Scholar
  185. 185.
    F. Hüe, M. Hÿtch, H. Bender, F. Houdellier, A. Claverie, Phys. Rev. Lett. 100, 156602 (2008)Google Scholar
  186. 186.
    S. Banerjee, K.A. Shore, C.J. Mitchell, J.L. Sly, M. Missous, IEE Proc. Circuits Devices Syst. 152, 497 (2005)Google Scholar
  187. 187.
    M. Razeghi, A. Evans, S. Slivken, J.S. Yu, J.G. Zheng, V.P. Dravid, Proc. SPIE 5840, 54 (2005)ADSCrossRefGoogle Scholar
  188. 188.
    R.A. Stradling, Semicond. Sci. Technol. 6, C52 (1991)CrossRefGoogle Scholar
  189. 189.
    P.K. Weimer, Proc. IEEE 52, 608 (1964)CrossRefGoogle Scholar
  190. 190.
    G. Ribakovs, A.A. Gundjian, IEEE J. Quant. Electron. QE-14, 42 (1978)ADSCrossRefGoogle Scholar
  191. 191.
    S.K. Dey, J. Vac. Sci. Technol. 10, 227 (1973)ADSCrossRefGoogle Scholar
  192. 192.
    S.J. Lynch, Thin Solid Bodies 102, 47 (1983)ADSCrossRefGoogle Scholar
  193. 193.
    V.V. Kudzin, V.S. Kulakov, D.R. Pape’, S.V. Kulakov, V.V. Molotok, IEEE. Ultrason. Symp. 1, 749 (1997)Google Scholar
  194. 194.
    F. Hatami, V. Lordi, J.S. Harris, H. Kostial, W.T. Masselink, J. Appl. Phys. 97, 096106 (2005)ADSCrossRefGoogle Scholar
  195. 195.
    B.W. Wessels, J. Electrochem. Soc. 122, 402 (1975)CrossRefGoogle Scholar
  196. 196.
    D.W.L. Tolfree, J. Sci. Instrum. 41, 788 (1964)ADSCrossRefGoogle Scholar
  197. 197.
    P.B. Hart, Proc. IEEE 61, 880 (1973)CrossRefGoogle Scholar
  198. 198.
    M.A. Hines, G.D. Scholes, Adv. Mater. 15, 1844 (2003)CrossRefGoogle Scholar
  199. 199.
    C.A. Wang, R.K. Huang, D.A. Shiau, M.K. Connors, P.G. Murphy, P.W. O’Brien, A.C. Anderson, D.M. DePoy, G. Nichols, M.N. Palmisiano, Appl. Phys. Lett. 83, 1286 (2003)ADSCrossRefGoogle Scholar
  200. 200.
    C.W. Hitchcock, R.J. Gutmann, J.M. Borrego, I.B. Bhat, G.W. Charache, IEEE Trans. Electron. Devices 46, 2154 (1999)ADSCrossRefGoogle Scholar
  201. 201.
    H.J. Goldsmid, R.W. Douglas, Br. J. Appl. Phys. 5, 386 (1954)ADSCrossRefGoogle Scholar
  202. 202.
    F.D. Rosi, B. Abeles, R.V. Jensen, J. Phys. Chem. Sol. 10, 191 (1959)ADSCrossRefGoogle Scholar
  203. 203.
    T.M. Tritt (ed.), Semiconductors and Semimetals, vol. 69, 70 and 71: Recent Trends in Thermoelectric Materials Research I, II and III (Academic Press, New York, 2000)Google Scholar
  204. 204.
    D.M. Rowe (ed.), CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995)Google Scholar
  205. 205.
    D.M. Rowe, C.M. Bhandari, Modern Thermoelectrics (Reston Publishing Company, Virginia, 1983)Google Scholar
  206. 206.
    D.M. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, 2006)Google Scholar
  207. 207.
    H. Choi, M. Chang, M. Jo, S.J. Jung, H. Hwang, Electrochem. Solid-State Lett. 11, H154 (2008)CrossRefGoogle Scholar
  208. 208.
    S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Appl. Opt. 35, 1956 (1996)ADSCrossRefGoogle Scholar
  209. 209.
    H.W.H. Lee, B.R. Taylor, S.M. Kauzlarich, Nonlinear Optics: Materials, Fundamentals, and Applications (Technical Digest, 12, 2000)Google Scholar
  210. 210.
    E. Brundermann, U. Heugen, A. Bergner, R. Schiwon, G.W. Schwaab, S. Ebbinghaus, D.R. Chamberlin, E.E. Haller, M. Havenith, IN 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz, Electronics, vol 283 (2004)Google Scholar
  211. 211.
    A.N. Baranov, T.I. Voronina, N.S. Zimogorova, L.M. Kauskaya, Y.P. Yakoviev, Sov. Phys. Semicond. 19, 1676 (1985)Google Scholar
  212. 212.
    M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima, M. Kimata, Jpn. J. Appl. Phys. 17, 2091 (1978)ADSCrossRefGoogle Scholar
  213. 213.
    F.S. Yuang, Y.K. Su, N.Y. Li, Jpn. J. Appl. Phys. 30, 207 (1991)ADSCrossRefGoogle Scholar
  214. 214.
    F.S. Yuang, Y.K. Su, N.Y. Li, K.J. Gan, J. Appl. Phys. 68, 6383 (1990)ADSCrossRefGoogle Scholar
  215. 215.
    Y.K. Su, S.M. Chen, J. Appl. Phys. 73, 8349 (1993)ADSCrossRefGoogle Scholar
  216. 216.
    S.K. Haywood, A.B. Henriques, N.J. Mason, R.J. Nicholas, P.J. Walker, Semicond. Sci. Technol. 3, 315 (1988)ADSCrossRefGoogle Scholar
  217. 217.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1965)Google Scholar
  218. 218.
    J.S. Blakemore, Semiconductor Statistics (Dover Publications, New York, 1987)Google Scholar
  219. 219.
    K.P. Ghatak, S. Bhattacharya, S.K. Biswas, A. Dey, A.K. Dasgupta, Phys. Scr. 75, 820 (2007)ADSzbMATHCrossRefGoogle Scholar
  220. 220.
    K.P. Ghatak, S. Bhattachaya, D. De, Einstein Relation in Compound Semiconductors and Nanostructures, Springer Series in Material Sciences, vol. 116 (Springer, Germany, 2009)Google Scholar
  221. 221.
    J.O. Dimmock, in The Physics of Semimetals and Narrowgap Semiconductors, ed. by D.L. Carter, R.T. Bates (Pergamon Press, Oxford, 1971)Google Scholar
  222. 222.
    D.G. Seiler, B.D. Bajaj, A.E. Stephens, Phys. Rev. B 16, 2822 (1977)ADSCrossRefGoogle Scholar
  223. 223.
    A.V. Germaneko, G.M. Minkov, Phys. Stat. Sol. (b) 184, 9 (1994)ADSCrossRefGoogle Scholar
  224. 224.
    G.L. Bir, G.E. Pikus, Symmetry and Strain -Induced effects in Semiconductors (Nauka, Russia, 1972)Google Scholar
  225. 225.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 135, K21 (1986)ADSCrossRefGoogle Scholar
  226. 226.
    J. Bouat, J.C. Thuillier, Surf. Sci. 73, 528 (1978)ADSCrossRefGoogle Scholar
  227. 227.
    G.J. Rees, Physics of Compounds, in Proceedings of the 13th International Conference ed. by F.G. Fumi (North Holland Company, 1976), p. 1166Google Scholar
  228. 228.
    P.R. Emtage, Phys. Rev. 138, A246 (1965)ADSCrossRefGoogle Scholar
  229. 229.
    M. Stordeur, W. Kuhnberger, Phys. Stat. Sol. (b) 69, 377 (1975)ADSCrossRefGoogle Scholar
  230. 230.
    D.R. Lovett, Semimetals and Narrow-Bandgap Semiconductor (Pion Limited, UK, 1977)Google Scholar
  231. 231.
    H. Kohler, Phys. Stat. Sol. (b) 74, 591 (1976)ADSCrossRefGoogle Scholar
  232. 232.
    M. Cardona, W. Paul, H. Brooks Helv, Acta Phys. 33, 329 (1960)Google Scholar
  233. 233.
    A.F. Gibson in Proceeding of International School of Physics, ENRICO FERMI, course XIII, ed. by R.A. Smith (Academic Press, New York, 1963), p. 171Google Scholar
  234. 234.
    C.C. Wang, N.W. Ressler, Phys. Rev. 2, 1827 (1970)ADSCrossRefGoogle Scholar
  235. 235.
    M. Zalazny, Phys. B 124, 352 (1984)Google Scholar
  236. 236.
    P.C. Mathur, S. Jain, Phys. Rev. 19, 1359 (1979)Google Scholar
  237. 237.
    E.L. Ivchenko, G.E. Pikus Sov, Phys. Semicond. 13, 579 (1979)Google Scholar
  238. 238.
    E. Bangert, P. Kastner, Phys. Stat. Sol (b) 61, 503 (1974)ADSCrossRefGoogle Scholar
  239. 239.
    G.M.T. Foley, P.N. Langenberg, Phys. Rev. B 15B, 4850 (1977)ADSCrossRefGoogle Scholar
  240. 240.
    V.I. Ivanov-Omskii, ASh Mekhtisev, S.A. Rustambekova, E.N. Ukraintsev, Phys. Stat. Sol. (b) 119, 159 (1983)Google Scholar
  241. 241.
    H.I. Zhang, Phys. Rev. B 1, 3450 (1970)ADSCrossRefGoogle Scholar
  242. 242.
    U. Rossler, Solid State Commun. 49, 943 (1984)ADSCrossRefGoogle Scholar
  243. 243.
    J. Johnson, D.H. Dickey, Phys. Rev. 1, 2676 (1970)ADSCrossRefGoogle Scholar
  244. 244.
    V.G. Agafonov, P.M. Valov, B.S. Ryvkin, I.D. Yarashetskin, Sov. Phys. Semiconduct. 12, 1182 (1978)Google Scholar
  245. 245.
    L.A. Vassilev, Phys. State sol(b) ,121, 203(1984)Google Scholar
  246. 246.
    N.S. Averkiev, V.M. Asnin, A.A. Bakun, A.M. Danishevskii, E.L. Ivchenko, G.E. Pikus, A.A. Rogachev, Sov. Phys. Semicond. 18, (1984) pp. 379, 402Google Scholar
  247. 247.
    R.W. Cunningham, Phys. Rev. 167, 761 (1968)ADSCrossRefGoogle Scholar
  248. 248.
    A.I. Yekimov, A.A. Onushchenko, A.G. Plyukhin, AI.L. Efros, J. Expt. Theor. Phys. 88, 1490 (1985)Google Scholar
  249. 249.
    B.J. Roman, A.W. Ewald, Phys. Rev. B5, 3914 (1972)ADSGoogle Scholar
  250. 250.
    G.P. Chuiko, Sov. Phys. Semiconduct. 19(12), 1381 (1985)Google Scholar
  251. 251.
    J.B. Ketterson, Phys. Rev. 129, 18 (1963)ADSCrossRefGoogle Scholar
  252. 252.
    N.B. Brandt, V.N. Davydov, V.A. Kulbachinskii, O.M. Nikitina, Sov. Phys. Sol. Stat. 29, 1014 (1987)Google Scholar
  253. 253.
    D.G. Seiler, W.M. Beeker, L.M. Roth, Phys. Rev. 1, 764 (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sitangshu Bhattacharya
    • 1
  • Kamakhya Prasad Ghatak
    • 2
  1. 1.Department of Electronics Systems Engineering, Nano Scale Device Research LaboratoryIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations