Skip to main content

Increasing Nanoparticles’ Refractive Index Sensitivity

  • Chapter
  • First Online:
Plasmons as Sensors

Part of the book series: Springer Theses ((Springer Theses))

  • 899 Accesses

Abstract

Since the plasmon resonance of nanoparticles depends on the refractive index of the immediate environment, these particles form the basis of many sensing schemes . The sensitivity of plasmon sensors for the detection of changes in the environment varies greatly and depends on the particle material and its morphology (size and shape). To further increase this sensitivity by chemical modifications was another goal of my work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J.,& Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442–453.

    Google Scholar 

  • Baciu, C., Becker, J., Janshoff, A.,& Sönnichsen, C. (2008). Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Letters, 8(6), 1724–1728.

    Google Scholar 

  • Becker, J., Zins, I., Jakab, A., Khalavka, Y., Schubert, O.,& Sönnichsen, C. (2008). Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods. Nano Letters, 8(6), 1719–1723.

    Google Scholar 

  • Chen, H., Kou, X., Yang, Z., Ni, W.,& Wang, J. (2008). Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir, 24(10), 5233–5237.

    Google Scholar 

  • Dmitriev, A., Hägglund, C., Chen, S., Fredriksson, H., Pakizeh, T., Käll, M., et al. (2008). Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Letters, 8(11), 3893–3898.

    Google Scholar 

  • Khalavka, Y., Becker, J.,& Sönnichsen, C. (2009). Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. Journal of the American Chemical Society, 131(5), 1871–1875.

    Google Scholar 

  • Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R., et al. (1997). Single molecule detection using surface-enhanced raman scattering (sers). Physical Review Letters, 78(9), 1667–1670.

    Google Scholar 

  • Lee, K.-S.,& El-Sayed, M. (2006). Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. Journal of Physical Chemistry B, 110(39), 19220–19225.

    Google Scholar 

  • McFarland, A. D.,& Van Duyne, R. P. (2003). Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Letters, 3(8), 1057–1062.

    Google Scholar 

  • Mock, J. J., Smith, D. R.,& Schultz, S. (2003). Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Letters, 3(4), 485–491.

    Google Scholar 

  • Murphy, C. J., Gole, A. M., Hunyadi, S. E., Stone, J. W., Sisco, P. N., Alkilany, A., et al. (2008). Chemical sensing and imaging with metallic nanorods. Chemical Communications, 5, 544–557.

    Google Scholar 

  • Nusz, G. J., Marinakos, S. M., Curry, A. C., Dahlin, A., Hook, F., Wax, A., et al. (2008). Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Analytical Chemistry, 80(4), 984–989.

    Google Scholar 

  • Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L. M.,& Mulvaney, P. (2005). Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 249(17–18), 1870–1901.

    Google Scholar 

  • Raschke, G., Kowarik, S., Franzl, T., Sönnichsen, C., Klar, T. A., Feldmann, J., et al. (2003). Biomolecular recognition based on single gold nanoparticle light scattering. Nano Letters, 3(7), 935–938.

    Google Scholar 

  • Raschke, G., Brogl, S., Susha, A. S., Rogach, A. L., Klar, T. A., Feldmann, J., et al. (2004). Gold nanoshells improve single nanoparticle molecular sensors. Nano Letters, 4(10), 1853–1857.

    Google Scholar 

  • Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J., Wilson, O., et al. (2002). Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters, 88(7), 077402.

    Google Scholar 

  • Sun, Y.,& Xia, Y. (2002). Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Analytical Chemistry, 74(20), 5297–5305.

    Google Scholar 

  • Sun, Y., Wiley, B., Li, Z.-Y.,& Xia, Y. (2004). Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. Journal of the American Chemical Society, 126(30), 9399–9406.

    Google Scholar 

  • Yang, J., Lu, L., Wang, H.,& Zhang, H. (2006). Synthesis of pt/ag bimetallic nanorattle with au core. Scripta Materialia, 54(2), 159–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Becker .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, J. (2012). Increasing Nanoparticles’ Refractive Index Sensitivity. In: Plasmons as Sensors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31241-0_9

Download citation

Publish with us

Policies and ethics