Novel Setups

  • Jan Becker
Part of the Springer Theses book series (Springer Theses)


Several techniques have been used to extract optical spectra of single plasmonic nanoparticles (Kalkbrenner et al. 2004; Van Dijk et al. 2005; Arbouet et al. 2004), most efficiently using dark-field microscopy. This setup investigates the spectrum of an individual nanoparticle by dispersing the scattered light with a spectrometer and capturing it with a connected charge-coupled device (CCD) camera. In setups used until now, one single particle is imaged onto a small pinhole in front of a spectrometer. Therefore it is only possible to investigate one single particle at the same time. The investigation of many particles was realized by manual moving each particle separately into the focus, which results in a very time consuming measurement. In this chapter I describe the development of a novel setup (fastSPS setup, Sect. 5.1), which measures the spectrum of all particles in the field of view automatically. Furthermore many particles are investigated at the same time, which results in an enormous decrease of the time needed for the measurement and the ability to monitor the spectra of many particles continuously in parallel.


Gold Nanorods Plasmon Mode Entrance Slit Polarization Pattern Polarization Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arbouet, A., Christofilos, D., Del Fatti, N., Vallee, F., Huntzinger, J. R., Arnaud, L., et al. (2004). Direct measurement of the single-metal-cluster optical absorption. Physical Review Letters, 93(12), 127401.Google Scholar
  2. Bartko, A. P.,& Dickson, R. M. (1999). Imaging three-dimensional single molecule orientations. Journal of Physical Chemistry B, 103(51), 11237–11241.Google Scholar
  3. Becker, J., Schubert, O.,& Sönnichsen, C. (2007). Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method. Nano Letters, 7(6), 1664–1669.Google Scholar
  4. Chung, I. H., Shimizu, K. T.,& Bawendi, M. G. (2003). Room temperature measurements of the 3d orientation of single cdse quantum dots using polarization microscopy. Proceedings of the National Academy of Sciences of the United States of America, 100(2), 405–408.Google Scholar
  5. Gemperlein, R. (1988). Fourier interferometric stimulation (fis) in biology and medicne. Microchimica Acta, 94, 353–356.Google Scholar
  6. Ha, T., Laurence, T. A., Chemla, D. S.,& Weiss, S. (1999). Polarization spectroscopy of single fluorescent molecules. Journal of Physical Chemistry B, 103(33), 6839–6850.Google Scholar
  7. Hanley, Q. S., Verveer, P. J.,& Jovin, T. M. (1998). Optical sectioning fluorescence spectroscopy in a programmable array microscope. Applied Spectroscopy, 52(6), 783–789.Google Scholar
  8. Herrala, E.,& Okkonen, J. (1996). Imaging spectrograph and camera solutions for industrial applications. International Journal of Pattern Recognition and Artificial Intelligence, 10(1), 43–54.Google Scholar
  9. Jiang, S. H.,& Walker, J. G. (2005). Non-scanning fluorescence confocal microscopy using speckle illumination and optical data processing. Optics Communications, 256(1–3), 35–45.Google Scholar
  10. Kalkbrenner, T., Hakanson, U.,& Sandoghdar, V. (2004). Tomographic plasmon spectroscopy of a single gold nanoparticle. Nano Letters, 4(12), 2309–2314.Google Scholar
  11. Kim, M. S., Chen, Y. R.,& Mehl, P. M. (2001). Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the Asae, 44(3), 721–729.Google Scholar
  12. Lieb, M. A., Zavislan, J. M.,& Novotny, L. (2004). Single-molecule orientations determined by direct emission pattern imaging. Journal of the Optical Society of America B-Optical Physics, 21(6), 1210–1215.Google Scholar
  13. Liu, G. L., Doll, J. C.,& Lee, L. P. (2005). High-speed multispectral imaging of nanoplasmonic array. Optics Express, 13(21), 8520–8525.Google Scholar
  14. Liu, G. L., Yin, Y. D., Kunchakarra, S., Mukherjee, B., Gerion, D., Jett, S. D., et al. (2006). A nanoplasmonic molecular ruler for measuring nuclease activity and dna footprinting. Nature Nanotechnology, 1(1), 47–52.Google Scholar
  15. Müller, J., Sönnichsen, C., von Poschinger, H., von Plessen, G., Klar, T. A.,& Feldmann, J. (2002). Electrically controlled light scattering with single metal nanoparticles. Applied Physics Letters, 81(1), 171–173.Google Scholar
  16. Muskens, O. L., Del Fatti, N., Vallee, F., Huntzinger, J. R., Billaud, P.,& Broyer, M. (2006). Single metal nanoparticle absorption spectroscopy and optical characterization. Applied Physics Letters, 88(6), 063109.Google Scholar
  17. Nelayah, J., Kociak, M., Stephan, O., de Abajo, F. J. G., Tence, M., Henrard, L., et al. (2007). Mapping surface plasmons on a single metallic nanoparticle. Nature Physics, 3(5), 348–353.Google Scholar
  18. Raschke, G., Kowarik, S., Franzl, T., Sönnichsen, C., Klar, T. A., Feldmann, J., et al. (2003). Biomolecular recognition based on single gold nanoparticle light scattering. Nano Letters, 3(7), 935–938.Google Scholar
  19. Reinhard, B. M., Siu, M., Agarwal, H., Alivisatos, A. P.,& Liphardt, J. (2005). Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles. Nano Letters, 5(11), 2246–2252.Google Scholar
  20. Schubert, O., Becker, J., Carbone, L., Khalavka, Y., Provalska, T., Zins, I., et al. (2008). Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry. Nano Letters, 8(8), 2345–2350.Google Scholar
  21. Sönnichsen, C. (2001). Plasmons in metal nanostructures. München: Cuvillier Verlag Göttingen.Google Scholar
  22. Sönnichsen, C.,& Alivisatos, A. P. (2005). Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Letters, 5(2), 301–304.Google Scholar
  23. Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J., Wilson, O., et al. (2002). Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters, 88(7), 077402.Google Scholar
  24. Sönnichsen, C., Reinhard, B. M., Liphardt, J.,& Alivisatos, A. P. (2005). A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnology, 23(6), 741–745.Google Scholar
  25. Toprak, E., Enderlein, J., Syed, S., McKinney, S. A., Petschek, R. G., Ha, T., et al. (2006). Defocused orientation and position imaging (dopi) of myosin v. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6495–6499.Google Scholar
  26. Van Dijk, M. A., Lippitz, M.,& Orrit, M. (2005). Far-field optical microscopy of single metal manoparticies. Accounts of Chemical Research, 38(7), 594–601.Google Scholar
  27. Weiss, S. (2000). Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nature Structural Biology, 7(9), 724–729.Google Scholar
  28. Yguerabide, J.,& Yguerabide, E. E. (1998). Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - i. theory. Analytical Biochemistry, 262(2), 137–156.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of MainzMainzGermany

Personalised recommendations