Skip to main content

Light-Scattering and -Absorption of Nanoparticles

  • Chapter
  • First Online:
Plasmons as Sensors

Part of the book series: Springer Theses ((Springer Theses))

Abstract

To understand the optical response of nanoparticles to the incident light, a theoretical description is needed, which is given in this chapter. In a first approximation, these optical properties can be described using a quasi-static model, which assumes a particle-size much smaller than the wavelength of the light. The derivation of the polarizability of a sphere, which describes its optical properties, and further extensions for spheroidal, rod-shaped and coated particles are given in Sect. 2.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bohren, C.,& Huffman, D. R. (1983). Absorption and scattering of light by small particles. New York: Wiley-Interscience.

    Google Scholar 

  • Bryant, G., Garcia de Abajo, F.,& Aizpurua, J. (2008). Mapping the plasmon resonances of metallic nanoantennas. Nano Letters, 8(2), 631–636.

    Google Scholar 

  • Draine, B.,& Flatau, P. (2004). User guide to the discrete dipole approximation code ddscat 6.1. http://arxiv.org/abs/astro-ph/0409262v2

  • Faraday, M. (1857). The Bakerian Lecture—on the experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 147, 145–181.

    Google Scholar 

  • Gans, R. (1912). über die Form ultramikroskopischer Goldteilchen. Annalen der Physik, 342(5), 881–900.

    Google Scholar 

  • Greiner, W. (1991). Theoretische Physik, Band 3: Klassische Elektrodynamik (5th ed.), p. 155. Fulda: Verlag Harri Deutsch.

    Google Scholar 

  • Jain, P. K.,& El-Sayed, M. (2008). Noble metal nanoparticle pairs: Effect of medium for enhanced nanosensing. Nano Letters, 8, 4347–4352.

    Google Scholar 

  • Jain, P. K., Huang, W. Y.,& El-Sayed, M. (2007). On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Letters, 7, 2080–2088.

    Google Scholar 

  • Johnson, P.,& Christy, R. (1972). Optical constants of the noble metals. Physical Review B, 6(12), 4370–4379.

    Google Scholar 

  • Kim, Y. J., Johnson, R. C., Li, J. G., Hupp, J. T.,& Schatz, G. C. (2002). Synthesis, linear extinction, and preliminary resonant hyper-rayleigh scattering studies of gold-core/silver-shell nanoparticles: Comparisons of theory and experiment. Chemical Physics Letters, 352(5–6), 421–428.

    Google Scholar 

  • Kooij, E. S.,& Poelsema, B. (2006). Shape and size effects in the optical properties of metallic nanorods. Physical Chemistry Chemical Physics, 8(28), 3349–3357.

    Google Scholar 

  • Kuwata, H., Tamaru, H., Esumi, K.,& Miyano, K. (2003). Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation. Applied Physics Letters, 83(22), 4625–4627.

    Google Scholar 

  • Link, S., El-Sayed, M. A.,& Mohamed, M. B. (2005). Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant (vol 103b, pg 3073, 1999). Journal of Physical Chemistry B, 109(20), 10531–10532.

    Google Scholar 

  • Link, S., Mohamed, M. B.,& El-Sayed, M. A. (1999). Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. Journal of Physical Chemistry B, 103(16), 3073–3077.

    Google Scholar 

  • Liu, M. Z.,& Guyot-Sionnest, P. (2004). Synthesis and optical characterization of au/ag core/shell nanorods. Journal of Physical Chemistry B, 108(19), 5882–5888.

    Google Scholar 

  • Maxwell, J. C. (1865). A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London, 155, 459–512.

    Google Scholar 

  • Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 25(3), 377–445.

    Google Scholar 

  • Mitra, S., Dass, N.,& Varshneya, N. (1972). Temperature dependence of refractive-index water. Journal of Chemical Physics, 57, 1798–1799.

    Google Scholar 

  • Myroshnychenko, V., Rodriguez-Fernandez, J., Pastoriza-Santos, I., Funston, A. M., Novo, C., Mulvaney, P., et al. (2008). Modelling the optical response of gold nanoparticles. Chemical Society Reviews, 37(9), 1792–1805.

    Google Scholar 

  • Nolting, W. (1997). Grundkurs Theoretische Physik, Band 3: Elektrodynamik (5th ed.), pp. 138. Braunschweig: Friedr, Vieweg und Sohn Verlagsgesellschaft.

    Google Scholar 

  • Novotny, L. (2007). Effective wavelength scaling for optical antennas. Physical Review Letters, 98(26), 266802.

    Google Scholar 

  • Osborn, J. A. (1945). Demagnetizing factors of the general ellipsoid. Physical Review, 67(11), 351–357.

    Google Scholar 

  • Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L. M.,& Mulvaney, P. (2005). Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 249(17–18), 1870–1901.

    Google Scholar 

  • Prescott, S. W.,& Mulvaney, P. (2006). Gold nanorod extinction spectra. Journal of Applied Physics, 99(12), 123504.

    Google Scholar 

  • Prescott, S. W.,& Mulvaney, P. (2008). Gold nanorod extinction spectra. Journal of Applied Physics, 103(11), 119901.

    Google Scholar 

  • Rayleigh, L. (1899). On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Philosophical Magazine (Series 5), 47(287), 375–384.

    Google Scholar 

  • Reinhard, B. M., Siu, M., Agarwal, H., Alivisatos, A. P.,& Liphardt, J. (2005). Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles. Nano Letters, 5(11), 2246–2252.

    Google Scholar 

  • Sönnichsen, C. (2001). Plasmons in metal nanostructures. München: Cuvillier Verlag Göttingen.

    Google Scholar 

  • Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J., Wilson, O., et al. (2002). Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters, 88(7), 077402.

    Google Scholar 

  • Strutt, J. L. R. (1871a). On the light from the sky, its polarization and colour. Philosophical Magazine (Series 4), 41(271), 107–120.

    Google Scholar 

  • Strutt, J. L. R. (1871b). On the light from the sky, its polarization and colour. Philosophical Magazine (Series 4), 41(273), 274–279.

    Google Scholar 

  • Strutt, J. L. R. (1871c). On the scattering of light by small particles. Philosophical Magazine (Series 4), 41(275), 447–454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Becker .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, J. (2012). Light-Scattering and -Absorption of Nanoparticles. In: Plasmons as Sensors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31241-0_2

Download citation

Publish with us

Policies and ethics