Advertisement

Light-Scattering and -Absorption of Nanoparticles

  • Jan Becker
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

To understand the optical response of nanoparticles to the incident light, a theoretical description is needed, which is given in this chapter. In a first approximation, these optical properties can be described using a quasi-static model, which assumes a particle-size much smaller than the wavelength of the light. The derivation of the polarizability of a sphere, which describes its optical properties, and further extensions for spheroidal, rod-shaped and coated particles are given in Sect. 2.2.

Keywords

Boundary Element Method Dielectric Function Geometrical Factor Silica Sphere Gold Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bohren, C.,& Huffman, D. R. (1983). Absorption and scattering of light by small particles. New York: Wiley-Interscience.Google Scholar
  2. Bryant, G., Garcia de Abajo, F.,& Aizpurua, J. (2008). Mapping the plasmon resonances of metallic nanoantennas. Nano Letters, 8(2), 631–636.Google Scholar
  3. Draine, B.,& Flatau, P. (2004). User guide to the discrete dipole approximation code ddscat 6.1. http://arxiv.org/abs/astro-ph/0409262v2
  4. Faraday, M. (1857). The Bakerian Lecture—on the experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 147, 145–181.Google Scholar
  5. Gans, R. (1912). über die Form ultramikroskopischer Goldteilchen. Annalen der Physik, 342(5), 881–900.Google Scholar
  6. Greiner, W. (1991). Theoretische Physik, Band 3: Klassische Elektrodynamik (5th ed.), p. 155. Fulda: Verlag Harri Deutsch.Google Scholar
  7. Jain, P. K.,& El-Sayed, M. (2008). Noble metal nanoparticle pairs: Effect of medium for enhanced nanosensing. Nano Letters, 8, 4347–4352.Google Scholar
  8. Jain, P. K., Huang, W. Y.,& El-Sayed, M. (2007). On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Letters, 7, 2080–2088.Google Scholar
  9. Johnson, P.,& Christy, R. (1972). Optical constants of the noble metals. Physical Review B, 6(12), 4370–4379.Google Scholar
  10. Kim, Y. J., Johnson, R. C., Li, J. G., Hupp, J. T.,& Schatz, G. C. (2002). Synthesis, linear extinction, and preliminary resonant hyper-rayleigh scattering studies of gold-core/silver-shell nanoparticles: Comparisons of theory and experiment. Chemical Physics Letters, 352(5–6), 421–428.Google Scholar
  11. Kooij, E. S.,& Poelsema, B. (2006). Shape and size effects in the optical properties of metallic nanorods. Physical Chemistry Chemical Physics, 8(28), 3349–3357.Google Scholar
  12. Kuwata, H., Tamaru, H., Esumi, K.,& Miyano, K. (2003). Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation. Applied Physics Letters, 83(22), 4625–4627.Google Scholar
  13. Link, S., El-Sayed, M. A.,& Mohamed, M. B. (2005). Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant (vol 103b, pg 3073, 1999). Journal of Physical Chemistry B, 109(20), 10531–10532.Google Scholar
  14. Link, S., Mohamed, M. B.,& El-Sayed, M. A. (1999). Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. Journal of Physical Chemistry B, 103(16), 3073–3077.Google Scholar
  15. Liu, M. Z.,& Guyot-Sionnest, P. (2004). Synthesis and optical characterization of au/ag core/shell nanorods. Journal of Physical Chemistry B, 108(19), 5882–5888.Google Scholar
  16. Maxwell, J. C. (1865). A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London, 155, 459–512.Google Scholar
  17. Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 25(3), 377–445.Google Scholar
  18. Mitra, S., Dass, N.,& Varshneya, N. (1972). Temperature dependence of refractive-index water. Journal of Chemical Physics, 57, 1798–1799.Google Scholar
  19. Myroshnychenko, V., Rodriguez-Fernandez, J., Pastoriza-Santos, I., Funston, A. M., Novo, C., Mulvaney, P., et al. (2008). Modelling the optical response of gold nanoparticles. Chemical Society Reviews, 37(9), 1792–1805.Google Scholar
  20. Nolting, W. (1997). Grundkurs Theoretische Physik, Band 3: Elektrodynamik (5th ed.), pp. 138. Braunschweig: Friedr, Vieweg und Sohn Verlagsgesellschaft.Google Scholar
  21. Novotny, L. (2007). Effective wavelength scaling for optical antennas. Physical Review Letters, 98(26), 266802.Google Scholar
  22. Osborn, J. A. (1945). Demagnetizing factors of the general ellipsoid. Physical Review, 67(11), 351–357.Google Scholar
  23. Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L. M.,& Mulvaney, P. (2005). Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 249(17–18), 1870–1901.Google Scholar
  24. Prescott, S. W.,& Mulvaney, P. (2006). Gold nanorod extinction spectra. Journal of Applied Physics, 99(12), 123504.Google Scholar
  25. Prescott, S. W.,& Mulvaney, P. (2008). Gold nanorod extinction spectra. Journal of Applied Physics, 103(11), 119901.Google Scholar
  26. Rayleigh, L. (1899). On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Philosophical Magazine (Series 5), 47(287), 375–384.Google Scholar
  27. Reinhard, B. M., Siu, M., Agarwal, H., Alivisatos, A. P.,& Liphardt, J. (2005). Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles. Nano Letters, 5(11), 2246–2252.Google Scholar
  28. Sönnichsen, C. (2001). Plasmons in metal nanostructures. München: Cuvillier Verlag Göttingen.Google Scholar
  29. Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J., Wilson, O., et al. (2002). Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters, 88(7), 077402.Google Scholar
  30. Strutt, J. L. R. (1871a). On the light from the sky, its polarization and colour. Philosophical Magazine (Series 4), 41(271), 107–120.Google Scholar
  31. Strutt, J. L. R. (1871b). On the light from the sky, its polarization and colour. Philosophical Magazine (Series 4), 41(273), 274–279.Google Scholar
  32. Strutt, J. L. R. (1871c). On the scattering of light by small particles. Philosophical Magazine (Series 4), 41(275), 447–454.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of MainzMainzGermany

Personalised recommendations