Advertisement

Superposition, Entanglement and Other Oddities

  • Hans Lüth
Part of the Graduate Texts in Physics book series (GTP)

Abstract

For a fundamental understanding of quantum mechanics, superposition and entanglement of quantum states are essential issues. These phenomena are explained by means of examples including the scattering of two identical particles. Special focus is on the quantum mechanical measurement process and on the disappearance of double slit interferences by gaining “Which Way” information. Using the density matrix formalism, open quantum systems and dephasing of coherent quantum states are discussed. This includes a short consideration of Schrödinger’s cat paradox. Important applications in the field of quantum information are presented, in particular the realization of a quantum bit by semiconductor quantum dots.

Keywords

Density Matrix Reduce Density Matrix Superposition State Spin Orientation Double Slit Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Schrödinger, Proc. Camb. Philos. Soc. 31, 555 (1935) ADSCrossRefGoogle Scholar
  2. 2.
    E. Schrödinger, Abhandlungen zur Wellenmechanik (J.A. Barth, Leipzig, 1927) zbMATHGoogle Scholar
  3. 3.
    E. Schrödinger, Briefe zur Wellenmechanik (Springer, Wien, 1963) zbMATHGoogle Scholar
  4. 4.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935) ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    D. Bohm, Phys. Rev. 85, 166 (1952) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    J.S. Bell, Physics 1, 195 (1964) Google Scholar
  7. 7.
    J.S. Bell, Rev. Mod. Phys. 38, 447 (1966) ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    M. Lamehi-Rachti, W. Mittig, Phys. Rev. 14, 2543 (1976) ADSGoogle Scholar
  9. 9.
    A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M.O. Scully, B.-G. Englert, H. Walther, Nature 351, 111 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    S. Dürr, T. Nonn, G. Rempe, Nature 395, 33 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    G.M. Palma, K.A. Suominen, A.K. Eckert, Proc. R. Soc. Lond. A 452, 567 (1996) ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    W. Unruh, Phys. Rev. A 51, 992 (1995) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    D. Di Vincenzo, Phys. Rev. A 50, 1015 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    V.N. Golovach, A. Khaetskii, D. Loss, Phys. Rev. Lett. 93, 016601-1 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    H.-K. Lo, S. Popescu, T. Spiller (eds.), Introduction to Quantum Computation and Information (World Scientific, Singapore, 1998) Google Scholar
  17. 17.
    D. Bouwmeester, A. Ekert, A. Zeilinger (eds.), The Physics of Quantum Information (Springer, Berlin, 2000) zbMATHGoogle Scholar
  18. 18.
    T. Hayashi, T. Fujisawa, H.D. Cheong, Y.H. Jeong, Y. Hirayama, Phys. Rev. Lett. 91, 226804-1 (2003) ADSGoogle Scholar
  19. 19.
    J. Gorman, D.G. Hasko, D.A. Williams, Phys. Rev. Lett. 95, 090502-1 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hans Lüth
    • 1
  1. 1.Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI)PGI-9: Semiconductor Nanoelectronics and Jülich Aachen Research Alliance (JARA)JülichGermany

Personalised recommendations