(In?)Extricable Links between Data and Visualization: Preliminary Results from the VISTAS Project

  • Judith Cushing
  • Evan Hayduk
  • Jerilyn Walley
  • Lee Zeman
  • Kirsten Winters
  • Mike Bailey
  • John Bolte
  • Barbara Bond
  • Denise Lach
  • Christoph Thomas
  • Susan Stafford
  • Nik Stevenson-Molnar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7338)

Abstract

Our initial survey of visualization tools for environmental science applications iden-tified sophisticated tools such as The Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers (VAPOR) [http://www.vapor.ucar.edu], and Man computer Interactive Data Access System (McIDAS)andThe Integrated Data Viewer (IDV) [http://www.unidata.ucar.edu/software]. A second survey of ours (32,279 figures in 1,298 articles published between July and December 2011 in 9 environmental science (ES) journals) suggests a gap between extant visualization tools and what scientists actually use; the vast majority of published ES visualizations are statistical graphs, presenting evidence to colleagues in respective subdisciplines. Based on informal, qualitative interviews with collaborators, and communication with scientists at conferences such as AGU and ESA, we hypothesize that visualizations of natural phenomena that differ significantly from what we found in the journals would positively impact scientists’ ability to tune models, intuit testable hypotheses, and communicate results. If using more sophisticated visualizations is potentially so desirable, why don’t environmental scientists use the available tools?

Keywords

Environmental Science Environmental Scientist Visualization Software Scientific Visualization Multiple Ecosystem Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cushing, J.B., et al.: What you see is what you get? In: Data Visualization Options for Environmental Scientists. Ecological Informatics Management Conference (2011)Google Scholar
  2. 2.
    Schultz, N., Bailey, M.: Using extruded volumes to visualize time-series datasets. In: Dill, J., et al. (eds.) Expanding the Frontiers of Visual Analytics and Visualization, pp. 127–148. Springer (2012) ISBN 978-1-4471-2803-8Google Scholar
  3. 3.
    Alexander, F., et al.: Big Data. IEEE Computing in Science & Engineering 13, 10–13 (2011)Google Scholar
  4. 4.
    Maier, D.: Navigating Oceans of Data. In: Abstracts of the Conference on Scientific and Statistical Database Management, http://cgi.di.uoa.gr/~ssdbm12/keynote1.html
  5. 5.
    Cushing, J.B., et al.: Enabling the Dialogue-Scientist< >Resource-Manager< > Stakeholder: Visual Analytics as Boundary Objects. IEEE Intelligent Systems 24, 75–79 (2009)MathSciNetGoogle Scholar
  6. 6.
    Smelik, R.M., et al.: Survey of Procedural Methods for Terrain Modeling. In: Egges, A., et al. (eds.) Proc. of the CASA Workshop on 3D Advanced Media in Gaming and Simulation (3AMIGAS), Amsterdam, The Netherlands, pp. 25–24 (2009)Google Scholar
  7. 7.
    Thomas, C.K., et al.: Seasonal Hydrology Explains Interannual and Seasonal Variation in Carbon and Water Exchange in a Semiarid Mature Ponderosa Pine Forest in Central Oregon. Journal of Geophysical Research 114, G04006 (2009)CrossRefGoogle Scholar
  8. 8.
    Kratz, T.K., et al.: Ecological Variability in Space and Time: Insights Gained from the US LTER Program. BioScience 53, 57–67 (2003)CrossRefGoogle Scholar
  9. 9.
    McKane, R., et al.: Integrated eco-hydrologic modeling framework for assessing effects of interacting stressors on multiple ecosystem services. ESA Annual Meeting (August 2010) Google Scholar
  10. 10.
    Bolte, J.P., et al.: Modeling Biocomplexity - Actors, Landscapes and Alternative Futures. Environmental Modelling & Software 22, 570–579 (2007)CrossRefGoogle Scholar
  11. 11.
    Turner, D.P., Ritts, W.D., Wharton, S., Thomas, C.: Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model. Remote Sensing of Environment 113(7), 1529–1539 (2009)CrossRefGoogle Scholar
  12. 12.
    Howe, B., Cole, G., Souroush, E., Koutris, P., Key, A., Khoussainova, N., Battle, L.: Database-as-a-Service for Long-Tail Science. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 480–489. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Judith Cushing
    • 1
  • Evan Hayduk
    • 1
  • Jerilyn Walley
    • 1
  • Lee Zeman
    • 1
  • Kirsten Winters
    • 2
  • Mike Bailey
    • 2
  • John Bolte
    • 2
  • Barbara Bond
    • 2
  • Denise Lach
    • 2
  • Christoph Thomas
    • 2
  • Susan Stafford
    • 3
  • Nik Stevenson-Molnar
    • 4
  1. 1.The Evergreen State CollegeUSA
  2. 2.Oregon State UniversityUSA
  3. 3.University of MinnesotaUSA
  4. 4.Conservation Biology Institute (Corvallis OR)USA

Personalised recommendations