A Dataflow Graph Transformation Language and Query Rewriting System for RDF Ontologies

  • Marianne Shaw
  • Landon T. Detwiler
  • James F. Brinkley
  • Dan Suciu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7338)


Users interested in biological and biomedical information sets on the semantic web are frequently not computer scientists. These researchers often find it difficult to use declarative query and view definition languages to manipulate these RDF data sets. We define a language IML consisting of a small number of graph transformations that can be composed in a dataflow style to transform RDF ontologies. The language’s operations closely map to the high-level manipulations users undertake when transforming ontologies using a visual editor. To reduce the potentially high cost of evaluating queries over these transformations on demand, we describe a query rewriting engine for evaluating queries on IML views. The rewriter leverages IML’s dataflow style and optimizations to eliminate unnecessary transformations in answering a query over an IML view. We evaluate our rewriter’s performance on queries over use case view definitions on one or more biomedical ontologies.


Graph Transformation Query Pattern Path Expression Visual Editor National Cancer Institute Thesaurus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    The minisat page,
  4. 4.
  5. 5.
  6. 6.
    The protege ontology editor and knowledge acquisition system,
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    Xquery update facility 1.0,
  11. 11.
    Chaudhuri, S.: An overview of query optimization in relational systems. In: PODS 1998, pp. 34–43. ACM, New York (1998)CrossRefGoogle Scholar
  12. 12.
    Cook, D.L., Mejino, J.L., Neal, M.L., Gennari, J.H.: Bridging biological ontologies and biosimulation: The ontology of physics for biology. In: American Medical Informatics Association Fall Symposium (2008)Google Scholar
  13. 13.
    Deutsch, A., Papakonstantinou, Y., Xu, Y.: The next framework for logical xquery optimization. In: VLDB 2004, vol. 30, pp. 168–179. VLDB Endowment (2004)Google Scholar
  14. 14.
    Fan, W., Cong, G., Bohannon, P.: Querying xml with update syntax. In: SIGMOD 2007, pp. 293–304. ACM, New York (2007)CrossRefGoogle Scholar
  15. 15.
    Fegaras, L.: A Schema-Based Translation of XQuery Updates. In: Lee, M.L., Yu, J.X., Bellahsène, Z., Unland, R. (eds.) XSym 2010. LNCS, vol. 6309, pp. 58–72. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Gueni, B., Abdessalem, T., Cautis, B., Waller, E.: Pruning nested xquery queries. In: Conf. on Information and Knowledge Management, pp. 541–550. ACM, New York (2008)Google Scholar
  17. 17.
    Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C.: Rapid prototyping of semantic mash-ups through semantic web pipes. In: WWW 2009, pp. 581–590. ACM, New York (2009)CrossRefGoogle Scholar
  18. 18.
    Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the semantic web through rvl lenses. Web Semantics 1(4), 359–375 (2004)CrossRefGoogle Scholar
  19. 19.
    May, N., Helmer, S., Moerkotte, G.: Strategies for query unnesting in xml databases. ACM Trans. Database Systems 31, 968–1013 (2006)CrossRefGoogle Scholar
  20. 20.
    Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf 1, 647–659 (2008)Google Scholar
  21. 21.
    Noy, N.F., Musen, M.A.: Specifying Ontology Views by Traversal. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 713–725. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Re, C., Simeon, J., Fernandez, M.: A complete and efficient algebraic compiler for xquery. In: ICDE 2006. IEEE Computer Society (2006)Google Scholar
  23. 23.
    Rosse, C., Mejino Jr., J.L.V.: A reference ontology for biomedical informatics: the foundational model of anatomy. Journal of Biomedical Informatics 36(6) (2003)Google Scholar
  24. 24.
    Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for sparql rules, sparql views and rdf data integration on the web. In: WWW 2008, pp. 585–594. ACM, New York (2008)CrossRefGoogle Scholar
  25. 25.
    Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimization. In: ICDT 2010, pp. 4–33. ACM, New York (2010)Google Scholar
  26. 26.
    Shaw, M., Detwiler, L.T., Noy, N., Brinkley, J., Suciu, D.: vsparql: A view definition language for the semantic web. Journal of Biomedical Informatics 44(1) (February 2011)Google Scholar
  27. 27.
    Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: Sparql basic graph pattern optimization using selectivity estimation. In: WWW 2008, pp. 595–604. ACM, New York (2008)CrossRefGoogle Scholar
  28. 28.
    Wang, S., Rundensteiner, E.A., Mani, M.: Optimization of nested xquery expressions with orderby clauses. Data Knowledge Eng. 60 (February 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marianne Shaw
    • 1
  • Landon T. Detwiler
    • 2
  • James F. Brinkley
    • 2
    • 3
  • Dan Suciu
    • 1
  1. 1.Computer Science & Eng.University of WashingtonSeattleUSA
  2. 2.Dept. of Biological StructureUniversity of WashingtonSeattleUSA
  3. 3.Dept. of Medical & Biological InformaticsUniversity of WashingtonSeattleUSA

Personalised recommendations