Abstract
An isochrone in a spatial network is the possibly disconnected set of all locations from where a query point is reachable within a given time span and by a given arrival time. In this paper we propose an efficient and scalable evaluation algorithm, termed (MINEX), for the computation of isochrones in multimodal spatial networks with different transportation modes. The space complexity of MINEX is independent of the network size and its runtime is determined by the incremental loading of the relevant network portions. We show that MINEX is optimal in the sense that only those network portions are loaded that eventually will be part of the isochrone. To keep the memory requirements low, we eagerly expire the isochrone and only keep in memory the minimal set of expanded vertices that is necessary to avoid cyclic expansions. The concept of expired vertices reduces MINEX’s memory requirements from \({\mathcal O}({\vert V^{iso}\vert})\) to \({\mathcal O}(\sqrt{\vert V^{iso}\vert})\) for grid and \({\mathcal O}(1)\) for spider networks, respectively. We show that an isochrone does not contain sufficient information to identify expired vertices, and propose an efficient solution that counts for each vertex the outgoing edges that have not yet been traversed. A detailed empirical study confirms the analytical results on synthetic data and shows that for real-world data the memory requirements are very small indeed, which makes the algorithm scalable for large networks and isochrones.
This work is partially funded by the Province and the Municipality of Bozen-Bolzano.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balasubramanian, V., Kalashnikov, D.V., Mehrotra, S., Venkatasubramanian, N.: Efficient and scalable multi-geography route planning. In: EDBT, pp. 394–405 (2010)
Bast, H.: Car or Public Transport—Two Worlds. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg (2009)
Bauer, V., Gamper, J., Loperfido, R., Profanter, S., Putzer, S., Timko, I.: Computing isochrones in multi-modal, schedule-based transport networks. In: ACMGIS, pp. 1–2 (2008)
de Almeida, V.T., Güting, R.H.: Using Dijkstra’s algorithm to incrementally find the k-nearest neighbors in spatial network databases. In: SAC, pp. 58–62 (2006)
Deng, K., Zhou, X., Shen, H.T., Sadiq, S.W., Li, X.: Instance optimal query processing in spatial networks. VLDB J. 18(3), 675–693 (2009)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)
Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: EDBT, pp. 205–216 (2008)
Gamper, J., Böhlen, M.H., Cometti, W., Innerebner, M.: Defining isochrones in multimodal spatial networks. In: CIKM, pp. 2381–2384 (2011)
Gubichev, A., Bedathur, S., Seufert, S., Weikum, G.: Fast and accurate estimation of shortest paths in large graphs. In: CIKM, pp. 499–508. ACM, New York (2010)
Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. on Systems Science and Cybernetics SSC-4(2), 100–107 (1968)
Hu, H., Lee, D.-L., Xu, J.: Fast Nearest Neighbor Search on Road Networks. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 186–203. Springer, Heidelberg (2006)
Huang, R.: A schedule-based pathfinding algorithm for transit networks using pattern first search. GeoInformatica 11(2), 269–285 (2007)
Jing, N., Huang, Y.-W., Rundensteiner, E.A.: Hierarchical encoded path views for path query processing: An optimal model and its performance evaluation. IEEE Trans. Knowl. Data Eng. 10(3), 409–432 (1998)
Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)
Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed patterns. In: ICDE (2006)
Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network databases. In: VLDB, pp. 840–851 (2004)
Kriegel, H.-P., Kröger, P., Renz, M., Schmidt, T.: Hierarchical Graph Embedding for Efficient Query Processing in Very Large Traffic Networks. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 150–167. Springer, Heidelberg (2008)
Marciuska, S., Gamper, J.: Determining Objects within Isochrones in Spatial Network Databases. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 392–405. Springer, Heidelberg (2010)
Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB, pp. 802–813 (2003)
Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: CIKM, pp. 867–876 (2009)
Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: SIGMOD Conference, pp. 43–54 (2008)
Thorup, M., Zwick, U.: Approximate distance oracles. In: STOC, pp. 183–192. ACM, New York (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gamper, J., Böhlen, M., Innerebner, M. (2012). Scalable Computation of Isochrones with Network Expiration. In: Ailamaki, A., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2012. Lecture Notes in Computer Science, vol 7338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31235-9_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-31235-9_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31234-2
Online ISBN: 978-3-642-31235-9
eBook Packages: Computer ScienceComputer Science (R0)