Skip to main content

Scalable Computation of Isochrones with Network Expiration

  • Conference paper
Scientific and Statistical Database Management (SSDBM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7338))

Abstract

An isochrone in a spatial network is the possibly disconnected set of all locations from where a query point is reachable within a given time span and by a given arrival time. In this paper we propose an efficient and scalable evaluation algorithm, termed (MINEX), for the computation of isochrones in multimodal spatial networks with different transportation modes. The space complexity of MINEX is independent of the network size and its runtime is determined by the incremental loading of the relevant network portions. We show that MINEX is optimal in the sense that only those network portions are loaded that eventually will be part of the isochrone. To keep the memory requirements low, we eagerly expire the isochrone and only keep in memory the minimal set of expanded vertices that is necessary to avoid cyclic expansions. The concept of expired vertices reduces MINEX’s memory requirements from \({\mathcal O}({\vert V^{iso}\vert})\) to \({\mathcal O}(\sqrt{\vert V^{iso}\vert})\) for grid and \({\mathcal O}(1)\) for spider networks, respectively. We show that an isochrone does not contain sufficient information to identify expired vertices, and propose an efficient solution that counts for each vertex the outgoing edges that have not yet been traversed. A detailed empirical study confirms the analytical results on synthetic data and shows that for real-world data the memory requirements are very small indeed, which makes the algorithm scalable for large networks and isochrones.

This work is partially funded by the Province and the Municipality of Bozen-Bolzano.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balasubramanian, V., Kalashnikov, D.V., Mehrotra, S., Venkatasubramanian, N.: Efficient and scalable multi-geography route planning. In: EDBT, pp. 394–405 (2010)

    Google Scholar 

  2. Bast, H.: Car or Public Transport—Two Worlds. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bauer, V., Gamper, J., Loperfido, R., Profanter, S., Putzer, S., Timko, I.: Computing isochrones in multi-modal, schedule-based transport networks. In: ACMGIS, pp. 1–2 (2008)

    Google Scholar 

  4. de Almeida, V.T., Güting, R.H.: Using Dijkstra’s algorithm to incrementally find the k-nearest neighbors in spatial network databases. In: SAC, pp. 58–62 (2006)

    Google Scholar 

  5. Deng, K., Zhou, X., Shen, H.T., Sadiq, S.W., Li, X.: Instance optimal query processing in spatial networks. VLDB J. 18(3), 675–693 (2009)

    Article  Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: EDBT, pp. 205–216 (2008)

    Google Scholar 

  8. Gamper, J., Böhlen, M.H., Cometti, W., Innerebner, M.: Defining isochrones in multimodal spatial networks. In: CIKM, pp. 2381–2384 (2011)

    Google Scholar 

  9. Gubichev, A., Bedathur, S., Seufert, S., Weikum, G.: Fast and accurate estimation of shortest paths in large graphs. In: CIKM, pp. 499–508. ACM, New York (2010)

    Google Scholar 

  10. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. on Systems Science and Cybernetics SSC-4(2), 100–107 (1968)

    Article  Google Scholar 

  11. Hu, H., Lee, D.-L., Xu, J.: Fast Nearest Neighbor Search on Road Networks. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 186–203. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Huang, R.: A schedule-based pathfinding algorithm for transit networks using pattern first search. GeoInformatica 11(2), 269–285 (2007)

    Article  Google Scholar 

  13. Jing, N., Huang, Y.-W., Rundensteiner, E.A.: Hierarchical encoded path views for path query processing: An optimal model and its performance evaluation. IEEE Trans. Knowl. Data Eng. 10(3), 409–432 (1998)

    Article  Google Scholar 

  14. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)

    Article  Google Scholar 

  15. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed patterns. In: ICDE (2006)

    Google Scholar 

  16. Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network databases. In: VLDB, pp. 840–851 (2004)

    Google Scholar 

  17. Kriegel, H.-P., Kröger, P., Renz, M., Schmidt, T.: Hierarchical Graph Embedding for Efficient Query Processing in Very Large Traffic Networks. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 150–167. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Marciuska, S., Gamper, J.: Determining Objects within Isochrones in Spatial Network Databases. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 392–405. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB, pp. 802–813 (2003)

    Google Scholar 

  20. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: CIKM, pp. 867–876 (2009)

    Google Scholar 

  21. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: SIGMOD Conference, pp. 43–54 (2008)

    Google Scholar 

  22. Thorup, M., Zwick, U.: Approximate distance oracles. In: STOC, pp. 183–192. ACM, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gamper, J., Böhlen, M., Innerebner, M. (2012). Scalable Computation of Isochrones with Network Expiration. In: Ailamaki, A., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2012. Lecture Notes in Computer Science, vol 7338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31235-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31235-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31234-2

  • Online ISBN: 978-3-642-31235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics