Skip to main content

Hinging Hyperplane Models for Multiple Predicted Variables

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7338))

Abstract

Model-based learning for predicting continuous values involves building an explicit generalization of the training data. Simple linear regression and piecewise linear regression techniques are well suited for this task, because, unlike neural networks, they yield an interpretable model. The hinging hyperplane approach is a nonlinear learning technique which computes a continuous model. It consists of linear submodels over individual partitions in the regressor space. However, it is only designed for one predicted variable. In the case of r predicted variables the number of partitions grows quickly with r and the result is no longer being compact or interpretable.

We propose a generalization of the hinging hyperplane approach for several predicted variables. The algorithm considers all predicted variables simultaneously. It enforces common hinges, while at the same time restoring the continuity of the resulting functions. The model complexity no longer depends on the number of predicted variables, remaining compact and interpretable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achtert, E., Böhm, C., David, J., Kröger, P., Zimek, A.: Robust clustering in arbitrarily oriented subspaces. In: SDM (2008)

    Google Scholar 

  2. Aggarwal, C., Yu, P.S.: Finding generalized projected clusters in high dimensional spaces. In: SIGMOD, pp. 70–81 (2000)

    Google Scholar 

  3. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach to piecewise affine system identification. IEEE Transactions on Automatic Control 50(10), 1567–1580 (2005)

    Article  MathSciNet  Google Scholar 

  4. Breiman, L.: Hinging hyperplanes for regression, classification, and function approximation. IEEE Transactions on Information Theory 39(3), 999–1013 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Breiman, L., Friedman, J.H., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)

    MATH  Google Scholar 

  6. Deshpande, A., Madden, S.: Mauvedb: supporting model-based user views in database systems. In: SIGMOD, pp. 73–84 (2006)

    Google Scholar 

  7. Dobra, A., Gehrke, J.: Secret: a scalable linear regression tree algorithm. In: KDD, pp. 481–487 (2002)

    Google Scholar 

  8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience (2000)

    Google Scholar 

  9. Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustering technique for the identification of piecewise affine systems. Automatica 39, 205–217 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedman, J.H.: Multivariate adaptive regression splines. The Annals of Statistics 19(1), 1–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ivanescu, A.M., Albin, T., Abel, D., Seidl, T.: Employing correlation clustering for the identification of piecewise affine models. In: KDMS Workshop in Conjunction with the 17th ACM SIGKDD, pp. 7–14 (2011)

    Google Scholar 

  12. Paoletti, S., Juloski, A.L., Ferrari-trecate, G., Vidal, R.: Identification of hybrid systems: a tutorial. Eur. J. of Control 513(2-3), 242–260 (2007)

    Article  Google Scholar 

  13. Pucar, P., Sjöberg, J.: On the hinge-finding algorithm for hinging hyperplanes. IEEE Transactions on Information Theory 44(3), 1310–1319 (1998)

    Article  MATH  Google Scholar 

  14. Thiagarajan, A., Madden, S.: Querying continuous functions in a database system. In: SIGMOD, pp. 791–804 (2008)

    Google Scholar 

  15. Tung, A.K.H., Xu, X., Ooi, B.C.: Curler: Finding and visualizing nonlinear correlated clusters. In: SIGMOD, pp. 467–478 (2005)

    Google Scholar 

  16. Vidal, R., Soatto, S., Ma, Y., Sastry, S.: An algebraic geometric approach to the identification of a class of linear hybrid systems. In: IEEE CDC, pp. 167–172 (2003)

    Google Scholar 

  17. Vogel, D.S., Asparouhov, O., Scheffer, T.: Scalable look-ahead linear regression trees. In: KDD, pp. 757–764 (2007)

    Google Scholar 

  18. Yeh, I.-C.: Modeling slump flow and concrete using second-order regressions and artificial neural networks. Cement Concrete Composites 29(6), 474–480 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ivanescu, A.M., Kranen, P., Seidl, T. (2012). Hinging Hyperplane Models for Multiple Predicted Variables. In: Ailamaki, A., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2012. Lecture Notes in Computer Science, vol 7338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31235-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31235-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31234-2

  • Online ISBN: 978-3-642-31235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics