Advertisement

Database Support for Exploring Scientific Workflow Provenance Graphs

  • Manish Kumar Anand
  • Shawn Bowers
  • Bertram Ludäscher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7338)

Abstract

Provenance graphs generated from real-world scientific workflows often contain large numbers of nodes and edges denoting various types of provenance information. A standard approach used by workflow systems is to visually present provenance information by displaying an entire (static) provenance graph. This approach makes it difficult for users to find relevant information and to explore and analyze data and process dependencies. We address these issues through a set of abstractions that allow users to construct specialized views of provenance graphs. Our model provides operations that allow users to expand, collapse, filter, group, and summarize all or portions of provenance graphs to construct tailored provenance views. A unique feature of the model is that it can be implemented using standard relational database technology, which has a number of advantages in terms of supporting existing provenance frameworks and efficiency and scalability of the model. We present and formalize the operations within the model as a set of relational queries expressed against an underlying provenance schema. We also present a detailed experimental evaluation that demonstrates the feasibility and efficiency of our approach against provenance graphs generated from a number of scientific workflows.

Keywords

Dependency Graph Current View Provenance Information Real Trace Provenance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L.: The Lorel query language for semistructured data. IJDL (1997)Google Scholar
  2. 2.
    Amsterdamer, Y., Davidson, S.B., Deutch, D., Milo, T., Stoyanovich, J., Tannen, V.: Putting lipstick on pig: Enabling database-style workflow provenance. PVLDB 5(4) (2011)Google Scholar
  3. 3.
    Anand, M.K., Bowers, S., Ludäscher, B.: A navigation model for exploring scientific workflow provenance graphs. In: Proc. of the Workshop on Workflows in Support of Large-Scale Science, WORKS (2009)Google Scholar
  4. 4.
    Anand, M.K., Bowers, S., Ludäscher, B.: Techniques for efficiently querying scientific workflow provenance graphs. In: EDBT, pp. 287–298 (2010)Google Scholar
  5. 5.
    Anand, M.K., Bowers, S., McPhillips, T.M., Ludäscher, B.: Efficient provenance storage over nested data collections. In: EDBT (2009)Google Scholar
  6. 6.
    Biton, O., Boulakia, S.C., Davidson, S.B., Hara, C.S.: Querying and managing provenance through user views in scientific workflows. In: ICDE (2008)Google Scholar
  7. 7.
    Bowers, S., McPhillips, T., Riddle, S., Anand, M.K., Ludäscher, B.: Kepler/pPOD: Scientific Workflow and Provenance Support for Assembling the Tree of Life. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 70–77. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., Vo, H.: VisTrails: Visualization meets data management. In: SIGMOD (2006)Google Scholar
  9. 9.
    Carey, M.J., Haas, L.M., Maganty, V., Williams, J.H.: PESTO: An integrated query/browser for object databases. In: VLDB (1996)Google Scholar
  10. 10.
    Chapman, A., Jagadish, H.V., Ramanan, P.: Efficient provenance storage. In: SIGMOD (2008)Google Scholar
  11. 11.
    Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and opportunities. In: SIGMOD (2008)Google Scholar
  12. 12.
    He, H., Singh, A.K.: Graphs-at-a-time: Query language and access methods for graph databases. In: SIGMOD, pp. 405–418 (2008)Google Scholar
  13. 13.
    Hunter, J., Cheung, K.: Provenance explorer-a graphical interface for constructing scientific publication packages from provenance trails. Int. J. Digit. Libr. 7(1) (2007)Google Scholar
  14. 14.
    Lim, C., Lu, S., Chebotko, A., Fotouhi, F.: Opql: A first opm-level query language for scientific workflow provenance. In: IEEE SCC, pp. 136–143 (2011)Google Scholar
  15. 15.
    Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Concurr. Comput.: Pract. Exper. 18(10) (2006)Google Scholar
  16. 16.
    Macko, P., Seltzer, M.: Provenance map orbiter: Interactive exploration of large provenance graphs. In: TAPP (2011)Google Scholar
  17. 17.
    Missier, P., Paton, N.W., Belhajjame, K.: Fine-grained and efficient lineage querying of collection-based workflow provenance. In: EDBT, pp. 299–310 (2010)Google Scholar
  18. 18.
    Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams, A., Oinn, T., Goble, C.: Taverna, Reloaded. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 471–481. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Moreau, L., et al.: The first provenance challenge. Concurr. Comput.: Pract. Exper. 20(5) (2008)Google Scholar
  20. 20.
    Moreau, L., et al.: The open provenance model core specification (v1.1). Future Generation Computer Systems 27(6), 743–756 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Muniswamy-Reddy, K.K., et al.: Layering in provenance systems. In: USENIX Annual Technical Conference (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manish Kumar Anand
    • 1
  • Shawn Bowers
    • 2
  • Bertram Ludäscher
    • 3
  1. 1.Microsoft CorporationRedmondUSA
  2. 2.Dept. of Computer ScienceGonzaga UniversitySpokaneUSA
  3. 3.Dept. of Computer ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations