Nonlinear Periodic Phononic Structures and Granular Crystals

  • G. Theocharis
  • N. Boechler
  • C. Daraio
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 173)


This chapter describes the dynamic behavior of nonlinear periodic phononic structures, along with how such structures can be utilized to affect the propagation of mechanical waves. Granular crystals are one type of nonlinear periodic phononic structure and are the focus of this chapter. The chapter begins with a brief history of nonlinear lattices and an introduction to granular crystals. This is followed by a summary of past and recent work on one-dimensional (1D) and two-dimensional (2D) granular crystals, which is categorized according to the crystals’ periodicity and dynamical regime. The chapter is concluded with a commentary by the authors, which discusses several possible future directions relating to granular crystals and other nonlinear periodic phononic structures. Throughout this chapter, a richness of nonlinear dynamic effects that occur in granular crystals is revealed, including a plethora of phenomena with no linear analog such as solitary waves, discrete breathers, tunable frequency band gaps, bifurcations, and chaos. Furthermore, in addition to the description of fundamental nonlinear phenomena, the authors describe how such phenomena can enable novel engineering devices and be applied to other nonlinear periodic systems.


Solitary Wave Defect Mode Nonlinear Regime Phononic Crystal Discrete Breather 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Duang, J. Guojin, Introduction to Condensed Matter Physics, vol. 1 (World Scientific, Singapore, 2005)CrossRefGoogle Scholar
  2. 2.
    O. Morsch, M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 78(1), 179–215 (2006)CrossRefGoogle Scholar
  3. 3.
    P. Markos, C.M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, Princeton, NJ, 2008)Google Scholar
  4. 4.
    L. Brillouin, Wave Propagation in Periodic Structures (McGraw-Hill, New York, 1953)Google Scholar
  5. 5.
    Nonlinearities in Periodic Structures and Metamaterials, ed. by C. Denz, S. Flach, Y.S. Kivshar. Springer Series in Optical Sciences, vol. 150 (Springer, Berlin, 2010)Google Scholar
  6. 6.
    Y.C. Fung, P. Tong, Classical and Computational Solid Mechanics (World Scientific Publishing, Singapore, 2001)Google Scholar
  7. 7.
    H. Hertz, Journal fur Die Reine und Angewandie Mathematic 92, 156–171 (1881)Google Scholar
  8. 8.
    L. Lifshitz, M.C. Cross, Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators, in Review of Nonlinear Dynamics and Complexity, ed. by H.G. Schuster (2008)Google Scholar
  9. 9.
    K. Bertoldi, M.C. Boyce, Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. Phys. Rev. B 77(5), 052105 (2008)Google Scholar
  10. 10.
    F.M. Hamilton, D.T. Blackstock, Nonlinear Acoustics: Theory and Applications (Academic, New York, 1997)Google Scholar
  11. 11.
    A.M. Samsonov, Strain Solitons and How to Construct Them (Chapman & Hall/CRC, Boca Raton, 2001)CrossRefGoogle Scholar
  12. 12.
    G.A. Maugin, Nonlinear Waves in Elastic Crystals (Oxford University Press, New York, NY, 1999)Google Scholar
  13. 13.
    P. Hess, Surface acoustic waves in materials science. Phys. Today 55(3), 42–47 (2002)CrossRefGoogle Scholar
  14. 14.
    V.F. Nesterenko, Dynamics of Heterogeneous Materials (Springer, New York, 2001)Google Scholar
  15. 15.
    M. Sato, B.E. Hubbard, A.J. Sievers, Colloquium: nonlinear energy localization and its manipulation in micromechanical oscillator arrays. Rev. Mod. Phys. 78(1), 137–157 (2006)CrossRefGoogle Scholar
  16. 16.
    B. Liang, B. Yuan, J.C. Cheng, Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103(10), 104301 (2009)CrossRefGoogle Scholar
  17. 17.
    B. Liang et al., An acoustic rectifier. Nat. Mater. 9(12), 989–992 (2010)CrossRefGoogle Scholar
  18. 18.
    H.Y. Hao, H.J. Maris, Experiments with acoustic solitons in crystalline solids. Phys. Rev. B 64(6), 064302 (2001)CrossRefGoogle Scholar
  19. 19.
    H.J. Maris, S. Tamura, Propagation of acoustic phonon solitons in nonmetallic crystals. Phys. Rev. B 84(2), 024301 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Terraneo, M. Peyrard, G. Casati, Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88(9), 094302 (2002)Google Scholar
  21. 21.
    B. Li, L. Wang, G. Casati, Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93(18), 184301 (2004)CrossRefGoogle Scholar
  22. 22.
    C.W. Chang et al., Solid-state thermal rectifier. Science 314(5802), 1121–1124 (2006)CrossRefGoogle Scholar
  23. 23.
    B. Li, L. Wang, G. Casati, Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88(14) (2006)Google Scholar
  24. 24.
    L. Wang, B. Li, Thermal logic gates: computation with phonons. Phys. Rev. Lett. 99(17), 177208 (2007)CrossRefGoogle Scholar
  25. 25.
    L. Wang, B. Li, Thermal memory: a storage of phononic information. Phys. Rev. Lett. 101(26), 267203 (2008)CrossRefGoogle Scholar
  26. 26.
    N. Yang, G. Zhang, B. Li, Carbon nanocone: a promising thermal rectifier. Appl. Phys. Lett. 93(24), 243111 (2008)Google Scholar
  27. 27.
    N. Yang, G. Zhang, B. Li, Thermal rectification in asymmetric graphene ribbons. Appl. Phys. Lett. 95(3), 033107 (2009)Google Scholar
  28. 28.
    E. Fermi, J.R. Pasta, S. Ulam, Studies of Nonlinear Problems (Los Alamos, Los Alamos Scientific Laboratory, 1955)CrossRefGoogle Scholar
  29. 29.
    M. Porter et al., Fermi, Pasta, Ulam and the birth of experimental mathematics. Am. Sci. 97(6) (2009)Google Scholar
  30. 30.
    D.B. Duncan et al., Solitons on lattices. Physica D 68(1), 1–11 (1993)CrossRefGoogle Scholar
  31. 31.
    Y.V. Kartashov, B.A. Malomed, L. Torner, Solitons in nonlinear lattices. Rev. Mod. Phys. 83(1), 247 (2011)CrossRefGoogle Scholar
  32. 32.
    P.G. Kevrekidis, Non-linear waves in lattices: past, present, future. IMA J. Appl. Math. 76(3), 389–423 (2011)CrossRefGoogle Scholar
  33. 33.
    S. Flach, A.V. Gorbach, Discrete breathers – advances in theory and applications. Phys. Rep. 467(1–3), 1–116 (2008)CrossRefGoogle Scholar
  34. 34.
    J.S. Russel, Report on Waves. Report of the 14th Meeting of the British Association for the Advancement of Science (1844), p. 311.Google Scholar
  35. 35.
    T. Dauxois, M. Peyrard, Physics of solitons (Cambridge University Press, Cambridge, 2006)Google Scholar
  36. 36.
    S. Aubry, Discrete breathers: localization and transfer of energy in discrete hamiltonian nonlinear systems. Physica D 216(1), 1–30 (2006)CrossRefGoogle Scholar
  37. 37.
    D.K. Campbell, S. Flach, Y.S. Kivshar, Localizing energy through nonlinearity and discreteness. Phys. Today 57(1), 43–49 (2004)CrossRefGoogle Scholar
  38. 38.
    S. Wiggins, Introduction to Applied Nonlinear Systems and Chaos, 2nd edn. (Springer, New York, NY, 2000)Google Scholar
  39. 39.
    R. Vijay, M.H. Devoret, I. Siddiqi, Invited Review Article: The Josephson Bifurcation Amplifier. Rev. Sci. Instrum. 80(11) (2009)Google Scholar
  40. 40.
    S.H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Publishing, Cambridge, MA, 1994)Google Scholar
  41. 41.
    M. Soljacic, J.D. Joannopoulos, Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 3(4), 211–219 (2004)CrossRefGoogle Scholar
  42. 42.
    R.B. Karabalin et al., Signal amplification by sensitive control of bifurcation topology. Phys. Rev. Lett. 106(9), 094102 (2011)Google Scholar
  43. 43.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1979)Google Scholar
  44. 44.
    V.F. Nesterenko, Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. [Zhurnal Prikladnoi Mekhaniki i Tehknicheskoi Fiziki], 1983. 24(5 [vol.24, no.5]), pp. 733–743 [136–148]Google Scholar
  45. 45.
    A.N. Lazaridi, V.F. Nesterenko, Observation of a new type of solitary waves in one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26(3), 405–408 (1985)CrossRefGoogle Scholar
  46. 46.
    C. Coste, E. Falcon, S. Fauve, Solitary waves in a chain of beads under hertz contact. Phys. Rev. E 56(5), 6104–6117 (1997)CrossRefGoogle Scholar
  47. 47.
    C. Coste, B. Gilles, On the validity of Hertz contact law for granular material acoustics. Eur. Phys. J. B 7(1), 155–168 (1999)CrossRefGoogle Scholar
  48. 48.
    C. Daraio et al., Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys. Rev. E 73(2), 026610 (2006)Google Scholar
  49. 49.
    N. Boechler, C. Daraio, An Experimental Investigation of Acoustic Band Gaps and Localization in Granular Elastic Chains, in Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2010, pp. 271–276Google Scholar
  50. 50.
    N. Boechler et al., Tunable vibrational band gaps in one-dimensional diatomic granular crystals with three-particle unit cells. J. Appl. Phys. 109(7), 074906 (2011)Google Scholar
  51. 51.
    N. Boechler et al., Discrete breathers in one-dimensional diatomic granular crystals. Phys. Rev. Lett. 104(24), 244302 (2010)Google Scholar
  52. 52.
    G. Theocharis et al., Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals. Phys. Rev. E 82(5), 056604 (2010)Google Scholar
  53. 53.
    K.R. Jayaprakash, Y. Starosvetsky, A.F. Vakakis, M. Peeters, G. Kerschen, Nonlinear normal modes and band gaps in granular chains with no pre-compression. Nonlinear Dynam. (2010). Available online: 10.1007/s11071-010-9809-0Google Scholar
  54. 54.
    V.F. Nesterenko et al., Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95(15), 158703 (2005)Google Scholar
  55. 55.
    C. Daraio et al., Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96(5), 058002 (2006).Google Scholar
  56. 56.
    E.B. Herbold et al., Tunable frequency band-gap and pulse propagation in a strongly nonlinear diatomic chain. Acta Mech. 205, 85–103 (2009)Google Scholar
  57. 57.
    F. Fraternali, M.A. Porter, C. Daraio, Optimal design of composite granular protectors. Mech. Adv. Mater. Struct. 17, 1–19 (2010)CrossRefGoogle Scholar
  58. 58.
    D. Khatri, P. Rizzo, C. Daraio. Highly Nonlinear Waves’ Sensor Technology for Highway Infrastructures. in SPIE Smart Structures/NDE, 15th annual international symposium. San Diego, CA, 2008Google Scholar
  59. 59.
    A. Spadoni, C. Daraio, Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. 107, 7230 (2010)CrossRefGoogle Scholar
  60. 60.
    N. Boechler, G. Theocharis, C. Daraio, Bifurcation-based acoustic switching and rectification. Nat. Mater. 10(9), 665–8 (2011)CrossRefGoogle Scholar
  61. 61.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)Google Scholar
  62. 62.
    D. Sun, C. Daraio, S. Sen, The nonlinear repulsive force between two solids with axial symmetry. Phys. Rev. E 83, 066605 (2011)Google Scholar
  63. 63.
    D. Ngo, D. Khatri, C. Daraio, Solitary waves in uniform chains of ellipsoidal particles. Phys. Rev. E 84, 026610 (2011)Google Scholar
  64. 64.
    D. Khatri, D. Ngo, C. Daraio, Solitary waves in uniform chains of cylindrical particles. Granul. Matter (2011), in pressGoogle Scholar
  65. 65.
    D. Ngo et al., Highly nonlinear solitary waves in chains of hollow spherical particles Granul. Matter (2012), in pressGoogle Scholar
  66. 66.
    M. de Billy, Experimental study of sound propagation in a chain of spherical beads. J. Acoust. Soc. Am. 108(4), 1486–1495 (2000)CrossRefGoogle Scholar
  67. 67.
    A. Pankov, Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices (Imperial College Press, London, 2005)CrossRefGoogle Scholar
  68. 68.
    S. Flach, A. Gorbach, Discrete breathers in Fermi-Pasta-Ulam lattices. Chaos 15(1), 015112 (2005)Google Scholar
  69. 69.
    Remoissenet, M., Waves Called Solitons (Concepts and Experiments). 3rd revised and enlarged edition ed (Springer, Berlin, 1999)Google Scholar
  70. 70.
    G.X. Huang, Z.P. Shi, Z.X. Xu, Asymmetric intrinsic localized modes in a homogeneous lattice with cubic and quartic anharmonicity. Phys. Rev. B 47(21), 14561–14564 (1993)CrossRefGoogle Scholar
  71. 71.
    V.J. Sanchez-Morcillo et al., Second Harmonics, Instabilities and Hole Solitons in 1D Phononic Granular Chains. in Phononics 2011: First International conference on phononic crystals, metamaterials and optomechanics, Santa Fe, New Mexico,USA, 2011Google Scholar
  72. 72.
    V. Tournat, V.E. Gusev, B. Castagnede, Self-demodulation of elastic waves in a one-dimensional granular chain. Phys. Rev. E 70(5), 056603 (2004)Google Scholar
  73. 73.
    P. Rosenau, J.M. Hyman, Compactons – solitons with finite wavelength. Phys. Rev. Lett. 70(5), 564–567 (1993)CrossRefGoogle Scholar
  74. 74.
    R.S. MacKay, Solitary waves in a chain of beads under Hertz contact. Phys. Lett. A 251(3), 191–192 (1999)CrossRefGoogle Scholar
  75. 75.
    G. Friesecke, J.A.D. Wattis, Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161(2), 391–418 (1994)CrossRefGoogle Scholar
  76. 76.
    J.Y. Ji, J.B. Hong, Existence criterion of solitary waves in a chain of grains. Phys. Lett. A 260(1–2), 60–61 (1999)CrossRefGoogle Scholar
  77. 77.
    S. Sen et al., Solitary waves in the granular chain. Phys. Rep. 462(2), 21–66 (2008)CrossRefGoogle Scholar
  78. 78.
    A. Chatterjee, Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E 59(5), 5912–5919 (1999)CrossRefGoogle Scholar
  79. 79.
    A. Rosas, K. Lindenberg, Pulse propagation in chains with nonlinear interactions. Phys. Rev. E 69(1), 016615 (2004)Google Scholar
  80. 80.
    A. Rosas, K. Lindenberg, Pulse velocity in a granular chain. Phys. Rev. E 69(3), 037601 (2004)Google Scholar
  81. 81.
    J.M. English, R.L. Pego, On the solitary wave pulse in a chain of beads. Proc. Am. Math. Soc. 133(6), 1763–1768 (2005)CrossRefGoogle Scholar
  82. 82.
    K. Ahnert, A. Pikovsky, Compactons and chaos in strongly nonlinear lattices. Phys. Rev. E 79(2), 026209 (2009)Google Scholar
  83. 83.
    Y. Starosvetsky, A.F. Vakakis, Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression. Phys. Rev. E 82(2), 026603 (2010)Google Scholar
  84. 84.
    Y. Zhu, A. Shukla, M.H. Sadd, The effect of microstructural fabric on dynamic load transfer in two dimensional assemblies of elliptical particles. J. Mech. Phys. Solids 44(8), 1283–1303 (1996)CrossRefGoogle Scholar
  85. 85.
    C. Daraio, V.F. Nesterenko, Strongly nonlinear wave dynamics in a chain of polymer coated beads. Phys. Rev. E 73(2), 026612 (2006)Google Scholar
  86. 86.
    C. Daraio et al., Strongly nonlinear waves in a chain of teflon beads. Phys. Rev. E 72(1), 016603 (2005)Google Scholar
  87. 87.
    S. Job et al., How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94(17), 178002 (2005)Google Scholar
  88. 88.
    S. Job et al., Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter 10, 13–20 (2007)CrossRefGoogle Scholar
  89. 89.
    F. Santibanez et al., Experimental evidence of solitary wave interaction in Hertzian chains. Phys. Rev. E 84(2), 026604 (2011)Google Scholar
  90. 90.
    D. Ngo, C. Daraio, Nonlinear dynamics of chains of coated particles (2011), in preparationGoogle Scholar
  91. 91.
    A.C. Hladky-Hennion, M. de Billy, Experimental validation of band gaps and localization in a one-dimensional diatomic phononic crystal. J. Acoust. Soc. Am. 122, 2594–2600 (2007)CrossRefGoogle Scholar
  92. 92.
    A.C. Hladky-Hennion, G. Allan, M. de Billy, Localized modes in a one-dimensional diatomic chain of coupled spheres. J. Appl. Phys. 98(5), 054909 (2005)Google Scholar
  93. 93.
    R.F. Wallis, Effect of free ends on the vibration frequencies of one-dimensional lattices. Phys. Rev. 105(2), 540–545 (1957)CrossRefGoogle Scholar
  94. 94.
    R. Livi, M. Spicci, R.S. MacKay, Breathers on a diatomic FPU chain. Nonlinearity 10(6), 1421–1434 (1997)CrossRefGoogle Scholar
  95. 95.
    P. Maniadis, A.V. Zolotaryuk, G.P. Tsironis, Existence and stability of discrete gap breathers in a diatomic beta Fermi-Pasta-Ulam chain. Phys. Rev. E 67(4), 046612 (2003)Google Scholar
  96. 96.
    G.X. Huang, B.B. Hu, Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity. Phys. Rev. B 57(10), 5746–5757 (1998)CrossRefGoogle Scholar
  97. 97.
    M. Aoki, S. Takeno, A.J. Sievers, Stationary anharmonic gap modes in a one-dimensional diatomic lattice with quartic anharmonicity. J. Physical Soc. Japan 62(12), 4295–4310 (1993)CrossRefGoogle Scholar
  98. 98.
    G. Theocharis, N. Boechler, C. Daraio, Control of Vibrational Energy in Nonlinear Granular Crystals, in Proceedings of Phononics, Santa Fe, New Mexico, USA, 2011, pp. 170–171Google Scholar
  99. 99.
    M.A. Porter et al., Highly nonlinear solitary waves in heterogeneous periodic granular media. Physica D 238, 666–676 (2009)CrossRefGoogle Scholar
  100. 100.
    K.R. Jayaprakash, Y. Starosvetsky, A.F. Vakakis, New family of solitary waves in granular dimer chains with no precompression. Phys. Rev. E 83(3 Pt 2), 036606 (2011)CrossRefGoogle Scholar
  101. 101.
    Y. Man et al., Defect modes in one-dimensional granular crystals. Phys. Rev. E 85, 037601 (2012)Google Scholar
  102. 102.
    G. Theocharis et al., Localized breathing modes in granular crystals with defects. Phys. Rev. E 80, 066601 (2009)CrossRefGoogle Scholar
  103. 103.
    S. Job et al., Wave localization in strongly nonlinear Hertzian chains with mass defect. Phys. Rev. E 80, 025602(R) (2009)CrossRefGoogle Scholar
  104. 104.
    P.C. Kevrekidis et al., Spontaneous symmetry breaking in photonic lattices: theory and experiment. Phys. Lett. A 340(1–4), 275–280 (2005)CrossRefGoogle Scholar
  105. 105.
    M. Albiez et al., Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95(1), 010402 (2005)Google Scholar
  106. 106.
    G. Theocharis et al., Symmetry breaking in symmetric and asymmetric double-well potentials. Phys. Rev. E 74(5), 056608 (2006)Google Scholar
  107. 107.
    S. Sen et al., Solitonlike pulses in perturbed and driven Hertzian chains and their possible applications in detecting buried impurities. Phys. Rev. E 57(2), 2386–2397 (1998)Google Scholar
  108. 108.
    M. Manciu et al., Phys. A 274, 607–618 (1999)Google Scholar
  109. 109.
    S. Sen et al., Int. J. Mod. Phys. B 19(18), 2951–2973 (2005). Review, and references thereinGoogle Scholar
  110. 110.
    E. Hascoet, H.J. Herrmann, Shocks in non-loaded bead chains with impurities. Eur. Phys. J. B 14(1), 183–190 (2000)CrossRefGoogle Scholar
  111. 111.
    Y. Starosvetsky, K.R. Jayaprakash, A.F. Vakakis, Scattering of solitary waves and excitation of transient breathers in granular media by light intruders. J. Appl. Mech. (2011), accepted for publicationGoogle Scholar
  112. 112.
    M. Manciu, S. Sen, A.J. Hurd, Impulse propagation in dissipative and disordered chains with power-law repulsive potentials. Physica D 157(3), 226–240 (2001)CrossRefGoogle Scholar
  113. 113.
    A. Rosas, K. Lindenberg, Pulse dynamics in a chain of granules with friction. Phys. Rev. E 68(4 Pt 1), 041304 (2003)CrossRefGoogle Scholar
  114. 114.
    N.V. Brilliantov et al., Model for collisions in granular gases. Phys. Rev. E 53(5), 5382–5392 (1996)CrossRefGoogle Scholar
  115. 115.
    E.B. Herbold, V.F. Nesterenko, Shock wave structure in a strongly nonlinear lattice with viscous dissipation. Phys. Rev. E 75(2), 021304 (2007)Google Scholar
  116. 116.
    A. Rosas et al., Observation of two-wave structure in strongly nonlinear dissipative granular chains. Phys. Rev. Lett. 98(16), 164301 (2007)Google Scholar
  117. 117.
    R. Carretero-Gonzalez et al., Dissipative solitary waves in periodic granular media. Phys. Rev. Lett. 102, 024102 (2009)CrossRefGoogle Scholar
  118. 118.
    I.S. Pavlov, A.I. Potapov, G.A. Maugin, A 2D granular medium with rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006)CrossRefGoogle Scholar
  119. 119.
    V. Tournat et al., Elastic waves in phononic monolayer granular membranes. New J. Phys. 13, 073042 (2011)Google Scholar
  120. 120.
    M.H. Sadd, J. Gao, A. Shukla, Numerical analysis of wave propagation through assemblies of elliptical particles. Comput. Geotech. 20(3–4), 323–343 (1997)CrossRefGoogle Scholar
  121. 121.
    A. Leonard, F. Fraternali, C. Daraio, Directional wave propagation in a highly nonlinear square packing of spheres. Exp. Mech. (2011), DOI: 10.1007/s11340-011-9544-6Google Scholar
  122. 122.
    J.D. Goddard, Nonlinear elasticity and pressure-dependent wave speed in granular media. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 430(1878), 105–131 (1990)CrossRefGoogle Scholar
  123. 123.
    S. Sen, R.S. Sinkovits, Sound propagation in impure granular columns. Phys. Rev. E 54(6), 6857–6865 (1996)CrossRefGoogle Scholar
  124. 124.
    B. Velicky, C. Caroli, Pressure dependence of the sound velocity in a two-dimensional lattice of Hertz-Mindlin balls: mean-field description. Phys. Rev. E 65(2), 021307 (2002)Google Scholar
  125. 125.
    B. Gilles, C. Coste, Low-frequency behavior of beads constrained on a lattice. Phys. Rev. Lett. 90(17), 174302 (2003)Google Scholar
  126. 126.
    M. Nishida, K. Tanaka, T. Ishida, DEM simulation of wave propagation in two-dimensional ordered array of particles. Shock Waves, vol. 2, Proceedings, ed. by K.S.F. Hannemann. (2009), pp. 815–820Google Scholar
  127. 127.
    A. Merkel, V. Tournat, V. Gusev, Elastic waves in noncohesive frictionless granular crystals. Ultrasonics 50(2), 133–138 (2010)CrossRefGoogle Scholar
  128. 128.
    M. Nishida, Y. Tanaka, DEM simulations and experiments for projectile impacting two-dimensional particle packings including dissimilar material layers. Granul. Matter 12(4), 357–368 (2010)CrossRefGoogle Scholar
  129. 129.
    A. Leonard, C. Daraio, A. Awasthi et al., Effects of weak disorder on stress wave anisotropy in centered square nonlinear granular crystals. Phys. Rev. E 86(3), 031305 (2012)Google Scholar
  130. 130.
    A. Leonard, C. Daraio, Varying stress wave anisotropy in centered square highly nonlinear granular crystals. Phys. Rev. Lett. 108, 214301 (2012)Google Scholar
  131. 131.
    A. Shukla, C.Y. Zhu, M. Sadd, Angular-dependence of dynamic load-transfer due to explosive loading in granular aggregate chains. J. Strain Anal. Eng. Des. 23(3), 121–127 (1988)CrossRefGoogle Scholar
  132. 132.
    C. Daraio et al., Highly nonlinear pulse splitting and recombination in a two-dimensional granular network. Phys. Rev. E 82(3), 036604 (2010)Google Scholar
  133. 133.
    D. Ngo, F. Fraternali, C. Daraio, Highly nonlinear solitary wave propagation in y-shaped granular crystals with variable branch angles. Phys. Rev. E 85, 036602 (2012)Google Scholar
  134. 134.
    J. Yang, S. Dunatunga, C. Daraio, Amplitude-dependent attenuation of compressive waves in curved granular crystals constrained by elastic guides. Acta Mech. 223, 549–562 (2012)Google Scholar
  135. 135.
    M. Eichenfield et al., Optomechanical crystals. Nature 462(7269), 78–82 (2009)CrossRefGoogle Scholar
  136. 136.
    S. Sadat-Saleh et al., Tailoring simultaneous photonic and phononic band gaps. J. Appl. Phys. 106(7), 074912 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations